- 1 For each sequence:
 - i state whether the sequence is increasing, decreasing, or periodic.
 - ii If the sequence is periodic, write down its order.

b
$$3, 1, \frac{1}{3}, \frac{1}{9}, \frac{1}{27}$$
 c $5, 9, 15, 23, 33$ **d** $3, -3, 3, -3, 3$

- 2 For each sequence:
 - i write down the first 5 terms of the sequence
 - ii state whether the sequence is increasing, decreasing, or periodic.
 - iii If the sequence is periodic, write down its order.

a
$$u_n = 20 - 3n$$

b
$$u_n = 2^{n-1}$$

c
$$u_n = \cos(180n^{\circ})$$

d
$$u_n = (-1)^n$$

e
$$u_{n+1} = u_n - 5$$
, $u_1 = 20$

f
$$u_{n+1} = 5 - u_n$$
, $u_1 = 20$

- $\mathbf{g} \ u_{n+1} = \frac{2}{3}u_n, u_1 = k$
- 3 The sequence of numbers u_1, u_2, u_3, \dots is given by $u_{n+1} = ku_n, u_1 = 5$. Find the range of values of k for which the sequence is strictly decreasing.
- **E/P) 4** The sequence with recurrence relation $u_{k+1} = pu_k + q$, $u_1 = 5$, where p is a constant and q = 13, is periodic with order 2. Find the value of p. (5 marks)
- **E/P)** 5 A sequence has *n*th term $a_n = \cos(90n^\circ)$, $n \ge 1$. a Find the order of the sequence. (1 mark) **b** Find $\sum_{r=0}^{444} a_r$ (2 marks)

a i increasing 1

b i decreasing

c i increasing

d i periodic

2 a i 17, 14, 11, 8, 5

b i 1, 2, 4, 8, 16

c i -1, 1, -1, 1, -1

iii 2

d i -1, 1, -1, 1, -1

iii 2

i 20, 15, 10, 5, 0

f i 20, -15, 20, -15, 20

iii 2

 $k, \frac{2k}{3}, \frac{4k}{9}, \frac{8k}{27}, \frac{16k}{81}$

ii dependent on value of k

0 < k < 1 4 p = -1

5 a 4

b 0

ii 2

ii decreasing

ii increasing

ii periodic

ii periodic

ii decreasing

ii periodic

- E/P
- 10 An arithmetic sequence has first term k^2 and common difference k, where k > 0. The fifth term of the sequence is 41. Find the value of k, giving your answer in the form $p + q\sqrt{5}$, where p and q are integers to be found. (4 marks)

Problem-solving

You will need to make use of the condition k > 0 in your answer.

Challenge

The *n*th term of an arithmetic sequence is $u_n = \ln a + (n-1) \ln b$ where a and b are integers. $u_3 = \ln 16$ and $u_7 = \ln 256$. Find the values of a and b.

- E/P
- 6 A sequence is given by

$$x_1 = 2$$

$$x_{n+1} = x_n(p - 3x_n)$$

where p is an integer.

a Show that $x_3 = -10p^2 + 132p - 432$.

(2 marks)

b Given that $x_3 = -288$ find the value of p.

(1 mark)

c Hence find the value of x_4 .

(1 mark)

- (E/P)
- 7 A sequence a_1, a_2, a_3, \dots is defined by

$$a_1 = k$$

$$a_{n+1} = 4a_n + 5$$

a Find a_3 in terms of k.

(2 marks)

b Show that $\sum_{r=1}^{4} a_r$ is a multiple of 5.

(3 marks)

10
$$-2 + 3\sqrt{5}$$

Challenge

$$a = 4, b = 2$$

6 **a**
$$x_2 = x_1(p - 3x_1) = 2(p - 3(2)) = 2p - 12$$

 $x_3 = (2p - 12)(p - 3(2p - 12)) = (2p - 12)(-5p + 36)$
 $= -10p^2 + 132p - 432$
b 12 **c** -252288

7 **a**
$$16k + 25$$

b $a_4 = 4(16k + 25) + 5 = 64k + 105$

$$\sum_{r=1}^{4} a_r = k + 4k + 5 + 16k + 25 + 64k + 105$$

$$= 85k + 135 = 5(17k + 27)$$