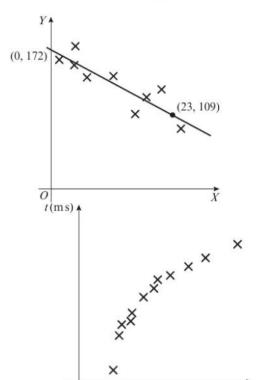
Exponential data

- 1 Data are coded using $Y = \log y$ and $X = \log y$ to give a linear relationship. The equation of the regression line for the coded data is Y = 1.2 + 0.4X.
 - a State whether the relationship between y and x is of the form $y = ax^n$ or $y = kb^x$.
 - **b** Write down the relationship between y and x and find the values of the constants.

The scatter diagram shows the relationship between two sets of coded data, X and Y, where $X = \log x$ and $Y = \log y$. The regression line of Y on X is shown, and passes through the points (0, 172) and (23, 109).

The relationship between the original data sets is modelled by an equation of the form $y = ax^n$. Find, correct to 3 decimal places, the values of a and n.


3

The time, t m s, needed for a computer algorithm to determine whether a number, n, is prime is recorded for different values of n. A scatter graph of t against n is drawn.

a Explain why a model of the form t = a + bn is unlikely to fit these data.

The data are coded using the changes of variable $y = \log t$ and $x = \log n$. The regression line of y on x is found to be y = -0.301 + 0.6x.

b Find an equation for t in terms of n, giving your answer in the form $t = an^k$, where a and k are constants to be found.

4

The heights, $h \, \text{cm}$, and masses, $m \, \text{kg}$, of a sample of Galapagos penguins are recorded. The data are coded using $y = \log m$ and $x = \log h$ and it is found that a linear relationship exists between x and y. The equation of the regression line of y on x is y = 0.0023 + 1.8x.

Find an equation to describe the relationship between m and h, giving your answer in the form $m = ah^n$, where a and n are constants to be found.

5

The table shows some data collected on the temperature, t °C, of a colony of insect larvae and the growth rate, g, of the population.

Temp, t (°C)	13	17	21	25	26	28
Growth rate, g	5.37	8.44	13.29	20.91	23.42	29.38

The data are coded using the changes of variable x = t and $y = \log g$. The regression line of y on x is found to be y = 0.09 + 0.05x.

- a Given that the data can be modelled by an equation of the form $g = ab^t$ where a and b are constants, find the values of a and b. (3 marks)
- **b** Give an interpretation of the constant b in this equation.

(1 mark)

c Explain why this model is not reliable for estimating the growth rate of the population when the temperature is 35 °C. (1 mark)

Answers to exponential data

- a As noted at the beginning of Section 1.1, the equation Y = 1.2 + 0.4 X can be rewritten as $\log_{y} = 1.2 + 0.4 \log_{x}$, which is of the form $\log_{y} = \log_{a} + n \log_{x}$ and so $y = ax^{n}$.
 - **b** Y = 1.2 + 0.4 X $\Rightarrow \log y = 1.2 + 0.4 \log x$ $\Rightarrow y = 10^{1.2 + 0.4 \log x} = 10^{1.2} \times 10^{0.4 \log x}$ $\Rightarrow y = 10^{1.2} \times 10^{\log_x 0.4} = 10^{1.2} \times x^{0.4}$ Therefore $y = 10^{1.2} \approx 15.8$ (3 s.f.) and y = 0.4

2

In the linear model Y = mX + c, where m and c are constants, $Y = \log_{Y}$ and $X = \log_{X}$, so $\log_{Y} = m \log_{X} + c$

Therefore $c = \log a$

The point (0, 172) lies on the line, so $_C = 172$ and $\log_{B} = 172 \Longrightarrow_{B} = 10^{172}$

(23, 109) lies on Y = mX + 172:

$$109 = 23 \, m + 172$$

$$\Rightarrow$$
 23 m = 109 - 172

$$\Rightarrow m = \frac{-63}{23} \approx -2.739 \text{ (3 d.p.)}.$$

3

- **a** The equation t = a + bn is the equation of a straight line, but the data on the scatter diagram are not close to a straight line.
- **b** $y = -0.301 + 0.6 \times 100 \times$

Therefore $_{\it B}=10^{-0.301}\approx 0.5 \ (3 \ s.f.) \ and \ _{\it K}=0.6 \ .$

- **b** If you increase the temperature by 1 °C, $_{D}$ is the increase in the growth rate $_{G}$, i.e. $_{D}$ is the rate of change of $_{G}$ per degree.
- c 35 °C is outside of the range of data (extrapolation).