1 At time t seconds, a particle P has position vector \mathbf{r} m with respect to a fixed origin O, where $\mathbf{r} = (3t - 4)\mathbf{i} + (t^3 - 4t)\mathbf{i}, t \ge 0$

Find:

- a the velocity of P when t = 3
- **b** the acceleration of P when t = 3.
- 2 A particle P of mass 3 grams moving in a plane is acted on by a force F N. Its velocity at time t seconds is given by $v = (t^2i + (2t - 3)j) \text{ m s}^{-1}, t \ge 0.$

Find **F** when t = 4.

3 In this question i and j are the unit vectors east and north respectively.

A particle P is moving in a plane. At time t seconds, the position vector of P, rm, relative to a fixed origin O is given by $r = 5e^{-3t}i + 2i$, $t \ge 0$.

- a Find the time at which the particle is directly north-east of O.
- **b** Find the speed of the particle at this time.
- c Explain why the particle is always moving directly west.
- 4 At time t seconds, a particle P has position vector r m with respect to a fixed origin O, where

$$\mathbf{r} = 4t^2\mathbf{i} + (24t - 3t^2)\mathbf{j}, t \ge 0$$

(3 marks)

a Find the speed of P when t = 2. **b** Show that the acceleration of P is a constant and find the magnitude of this acceleration.

(3 marks)

5 A particle P of mass 0.5 kg is initially at a fixed origin O. At time t = 0, P is projected from O and moves so that, at time t seconds after projection, its position vector r m relative to O is given by

$$\mathbf{r} = (t^3 - 12t)\mathbf{i} + (4t^2 - 6t)\mathbf{j}, t \ge 0$$

Find:

- (5 marks) a the speed of projection of P
- **b** the value of t at the instant when P is moving parallel to **j** (3 marks)
- c the position vector of P at the instant when P is moving parallel to j. (3 marks)

The motion of the particle is due to it being acted on by a single variable force, FN.

d Given that the mass of the particle is $0.5 \,\mathrm{kg}$, find the magnitude of **F** when $t = 5 \,\mathrm{s}$. (4 marks)

- 1 A particle P starts from rest at a fixed origin \emptyset . The acceleration of P at time waxwell (where $t \ge 0$) is $(6t^3i + (8 4/3i)ms^{-1})$ Find:
 - a the velocity of P when t = 2

(Filmery)

b the position vector of P when t = 4

(America)

2 A particle P is moving in a plane with velocity wms at time received where

$$v = (3r^2 + 2)i + (6r - 4)i, r \ge 0$$

When t = 2, P has position vector 9j m with respect to a thred engin \emptyset . Find

a the distance of P from O when t=0

(Lemmiss)

b the acceleration of P at the instant when it is moving parallel to the weeking

(demanded)

3 At time t seconds, where $t \ge 0$, the particle P is moving in a plane with well-bly with acceleration $a \text{ m s}^{-1}$, where $a = (2t - 4)i + 6 \sin 6i$.

Given that P is instantaneously at rest when $t = \frac{1}{2}$ seconds, find

a v in terms of \u03c4 and \u03c4

(Smarks)

b the exact speed of P when $r = \frac{3\pi}{5}$

(Smarks)

4 At time t seconds (where t ≥ 0), the particle P is moving in a plane with acceleration where

$$\mathbf{a} = (5t - 3)\mathbf{i} + (8 - t)\mathbf{j}$$

When t = 0, the velocity of P is $(2i - Sj)ms^{-1}$. Find:

a the velocity of Pafter r seconds

(Smazks)

b the value of a for which P is moving parallel to it - ij

(4)manks)

c the speed of P when it is moving parallel to it - ij.

(Smarks)

- 5 At time t seconds (where $t \ge 0$), a particle P is moving in a plane with acceleration (2i 2tj) m s⁻². When t = 0, the velocity of P is 2jms and the position vector of P is 2jms and the position vector of P is 2jms.
 - a Find the position vector of Pat time / seconds.

(Same gr

At time t seconds (where $t \ge 0$), a second particle Q is moving in the plane with whether $((3t^2-4)i-2tj)$ ms⁻¹. The particles collide when $t \ge 3$.

b Find the position vector of Quit time = 0.

(dymanks)

