## TRACKING TEST 2 <sup>1</sup>/<sub>2</sub>

Name.....

| Question   | Max | Score |
|------------|-----|-------|
| 1          | 13  |       |
| 2          | 13  |       |
| 3          | 11  |       |
| 4          | 12  |       |
| 5          | 9   |       |
| 6          | 9   |       |
| 7          | 8   |       |
| TOTAL      | 75  |       |
| PERCENTAGE | 100 |       |

1. (a) Find  $\int \tan^2 x \, dx$ .

- (b) Use integration by parts to find  $\int \frac{1}{x^3} \ln x \, dx$ .
- (c) Use the substitution  $u = 1 + e^x$  to show that

$$\int \frac{e^{3x}}{1+e^x} dx = \frac{1}{2}e^{2x} - e^x + \ln(1+e^x) + k,$$

where *k* is a constant.

(7)

(2)

(4)

| <br> |
|------|
| <br> |
|      |
|      |
| <br> |
| <br> |
|      |
|      |
| <br> |
|      |
|      |
| <br> |
| <br> |
|      |
|      |
|      |
| <br> |
|      |
|      |
| <br> |
|      |
|      |
| <br> |
| <br> |
|      |
|      |
| <br> |
| <br> |
|      |
|      |
| <br> |
|      |
|      |
| <br> |
| <br> |
|      |
|      |
|      |
| <br> |
| <br> |
| <br> |
|      |
|      |
| <br> |
| <br> |
|      |
| <br> |

2. (a) (i) By writing 
$$3\theta = (2\theta \cdot \theta)$$
, show that  
 $\sin 3\theta = 3 \sin \theta - 4 \sin^2 \theta$ . (4)  
(ii) Hence, or otherwise, for  $0 < \theta < \frac{\pi}{3}$ , solve  
 $8 \sin^2 \theta - 6 \sin \theta + 1 = 0$ .  
Give your answers in terms of  $\pi$ . (5)  
(b) Using  $\sin (\theta - \alpha) = \sin \theta \cos \alpha - \cos \theta \sin \alpha$ , or otherwise, show that  
 $\sin 15^\circ = \frac{1}{4} (\sqrt{6} - \sqrt{2})$ . (4)

| <br> |
|------|
| <br> |
|      |
|      |
| <br> |
|      |
| <br> |
| <br> |
|      |
|      |
|      |
|      |
| <br> |
|      |
|      |
| <br> |
|      |
|      |
| <br> |
|      |
|      |
|      |
| <br> |
| <br> |
|      |
|      |
| <br> |
|      |
| <br> |
|      |
|      |

3. 
$$f(x) = 3xe^x - 1$$
.

The curve with equation y = f(x) has a turning point *P*.

(*a*) Find the exact coordinates of *P*.

The equation f(x) = 0 has a root between x = 0.25 and x = 0.3.

(b) Use the iterative formula  $x_{n+1} = \frac{1}{3}e^{-x_n}$ .

with  $x_0 = 0.25$  to find, to 4 decimal places, the values of  $x_1$ ,  $x_2$  and  $x_3$ .

(c) By choosing a suitable interval, show that a root of f(x) = 0 is x = 0.2576 correct to 4 decimal places.

(3)

(3)

(5)



| <br> |
|------|
|      |
|      |
| <br> |
|      |
|      |
|      |
|      |
| <br> |
|      |
|      |
|      |
|      |
|      |
| <br> |
|      |
|      |
| <br> |
|      |
|      |
| <br> |
|      |
| <br> |
| <br> |
|      |
| <br> |
|      |
| <br> |
| <br> |
|      |
|      |
| <br> |
|      |
|      |
| <br> |
|      |
| <br> |
| <br> |
|      |
| <br> |
|      |

| <b>4.</b> ( <i>a</i> ) | Express $3 \cos \theta + 4 \sin \theta$ in the form $R \cos (\theta - \alpha)$ , |     |
|------------------------|----------------------------------------------------------------------------------|-----|
| where <i>l</i>         | <i>R</i> and $\alpha$ are constants, $R > 0$ and $0 < \alpha < 90^{\circ}$ .     | (4) |

(b) Hence find the maximum value of  $3 \cos \theta + 4 \sin \theta$  and the smallest positive value of  $\theta$  for which this maximum occurs. (3)

The temperature, f(*t*), of a warehouse is modelled using the equation f (*t*) =  $10 + 3 \cos(15t)^\circ + 4 \sin(15t)^\circ$ , where *t* is the time in hours from midday and  $0 \le t < 24$ .

| ( <i>c</i> ) | Calculate the minimum temperature of the warehouse as given by this model. | (2) |
|--------------|----------------------------------------------------------------------------|-----|
|--------------|----------------------------------------------------------------------------|-----|

(3)

(*d*) Find the value of *t* when this minimum temperature occurs.

| <br> |
|------|
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
| <br> |
|      |
| <br> |
|      |
| <br> |
|      |
|      |
|      |
|      |
|      |
|      |
| <br> |
|      |
| <br> |
|      |
| <br> |
|      |
|      |
|      |
|      |
| <br> |
|      |
| <br> |
|      |
|      |
|      |
| <br> |
|      |
|      |
|      |
|      |
| <br> |
| <br> |
| <br> |
|      |
|      |
| <br> |
|      |
|      |
|      |
|      |
|      |
|      |
| <br> |
|      |
| <br> |
|      |

A curve is described by the equation 5.

$$x^3 - 4y^2 = 12xy.$$
  
Find the coordinates of the two points on the curve where  $x = -8.$  (3)

- (*a*)
- (*b*) Find the gradient of the curve at each of these points.

(6)

| <br> |
|------|
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
| <br> |
| <br> |
| <br> |
| <br> |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |



Figure 1

Figure 1 shows a ladder *AB*, of mass 25 kg and length 4 m, resting in equilibrium with one end *A* on rough horizontal ground and the other end *B* against a smooth vertical wall. The ladder is in a vertical plane perpendicular to the wall. The coefficient of friction between the ladder and the ground is  $\frac{11}{25}$ . The ladder makes an angle  $\beta$  with the ground. When Reece, who has mass 75 kg, stands at the point *C* on the ladder, where AC = 2.8 m, the ladder is on the point of slipping. The ladder is modelled as a uniform rod and Reece is modelled as a particle.

- (a) Find the magnitude of the frictional force of the ground on the ladder.
- (b) Find, to the nearest degree, the value of  $\beta$ .

6.

(6)

(3)

| <br> |
|------|
| <br> |
| <br> |
|      |
|      |
| <br> |
| <br> |
|      |
|      |
| <br> |
| <br> |
|      |
|      |
| <br> |
| <br> |
|      |
|      |
| <br> |
| <br> |
|      |
| <br> |
| <br> |
|      |
|      |
| <br> |
| <br> |
|      |
|      |
| <br> |
| <br> |
|      |
|      |
| <br> |
| <br> |
|      |
|      |
| <br> |
| <br> |
| <br> |
|      |
|      |
| <br> |
| <br> |
|      |
| <br> |
| <br> |
|      |

7. The heights of a group of athletes are modelled by a normal distribution with mean 180 cm and a standard deviation 5.2 cm. The weights of this group of athletes are modelled by a normal distribution with mean 85 kg and standard deviation 7.1 kg. Find the probability that a randomly chosen athlete

| ( <i>a</i> ) | is taller than 188 cm,  | (3) |
|--------------|-------------------------|-----|
| ( <i>b</i> ) | weighs less than 97 kg. | (2) |

(c) Assuming that for these athletes height and weight are independent, find the probability that a randomly chosen athlete is taller than 188 cm and weighs more than 97 kg. (3)

