TRACKING TEST $\mathbf{2}^{1 ⁄ 2}$

Name.

Question	Max	Score
1	13	
2	13	
3	11	
4	12	
5	9	
6	9	
7	8	
TOTAL	75	
PERCENTAGE	100	

1. (a) Find $\int \tan ^{2} x d x$.
(b) Use integration by parts to find $\int \frac{1}{x^{3}} \ln x \mathrm{~d} x$.
(4)
(c) Use the substitution $u=1+\mathrm{e}^{x}$ to show that

$$
\int \frac{\mathrm{e}^{3 x}}{1+\mathrm{e}^{x}} \mathrm{~d} x=\frac{1}{2} \mathrm{e}^{2 x}-\mathrm{e}^{x}+\ln \left(1+\mathrm{e}^{x}\right)+k
$$

where k is a constant.
\qquad
2. (a) (i) By writing $3 \theta=(2 \theta+\theta)$, show that

$$
\begin{equation*}
\sin 3 \theta=3 \sin \theta-4 \sin ^{3} \theta . \tag{4}
\end{equation*}
$$

(ii) Hence, or otherwise, for $0<\theta<\frac{\pi}{3}$, solve

$$
8 \sin ^{3} \theta-6 \sin \theta+1=0
$$

Give your answers in terms of π.
(b) Using $\sin (\theta-\alpha)=\sin \theta \cos \alpha-\cos \theta \sin \alpha$, or otherwise, show that

$$
\begin{equation*}
\sin 15^{\circ}=\frac{1}{4}(\sqrt{6}-\sqrt{ } 2) \tag{4}
\end{equation*}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\square
\qquad
\qquad
\qquad 4
\qquad
3. $\mathrm{f}(x)=3 x \mathrm{e}^{x}-1$.

The curve with equation $y=\mathrm{f}(x)$ has a turning point P.
(a) Find the exact coordinates of P.

The equation $\mathrm{f}(x)=0$ has a root between $x=0.25$ and $x=0.3$.
(b) Use the iterative formula $\quad x_{n+1}=\frac{1}{3} \mathrm{e}^{-x_{n}}$. with $x_{0}=0.25$ to find, to 4 decimal places, the values of x_{1}, x_{2} and x_{3}.
(c) By choosing a suitable interval, show that a root of $\mathrm{f}(x)=0$ is $x=0.2576$ correct to 4 decimal places.
\qquad
\qquad
\qquad
\qquad
\qquad
\square
\qquad
\qquad
\qquad \longrightarrow
\qquad
4. (a) Express $3 \cos \theta+4 \sin \theta$ in the form $R \cos (\theta-\alpha)$,
where R and α are constants, $R>0$ and $0<\alpha<90^{\circ}$.
(b) Hence find the maximum value of $3 \cos \theta+4 \sin \theta$ and the smallest positive value of θ for which this maximum occurs.

The temperature, $\mathrm{f}(t)$, of a warehouse is modelled using the equation

$$
\mathrm{f}(t)=10+3 \cos (15 t)^{\circ}+4 \sin (15 t)^{\circ}
$$

where t is the time in hours from midday and $0 \leq t<24$.
(c) Calculate the minimum temperature of the warehouse as given by this model.
(d) Find the value of t when this minimum temperature occurs.
\qquad
5. A curve is described by the equation

$$
x^{3}-4 y^{2}=12 x y .
$$

(a) Find the coordinates of the two points on the curve where $x=-8$.
(b) Find the gradient of the curve at each of these points.
\qquad
\qquad
\qquad \longrightarrow
\qquad
\qquad \longrightarrow
\qquad
\qquad
\qquad
\qquad
\qquad
6.

Figure 1
Figure 1 shows a ladder $A B$, of mass 25 kg and length 4 m , resting in equilibrium with one end A on rough horizontal ground and the other end B against a smooth vertical wall. The ladder is in a vertical plane perpendicular to the wall. The coefficient of friction between the ladder and the ground is $\frac{11}{25}$. The ladder makes an angle β with the ground. When Reece, who has mass 75 kg , stands at the point C on the ladder, where $A C=2.8 \mathrm{~m}$, the ladder is on the point of slipping. The ladder is modelled as a uniform rod and Reece is modelled as a particle.
(a) Find the magnitude of the frictional force of the ground on the ladder.
(b) Find, to the nearest degree, the value of β.
\qquad
7. The heights of a group of athletes are modelled by a normal distribution with mean 180 cm and a standard deviation 5.2 cm . The weights of this group of athletes are modelled by a normal distribution with mean 85 kg and standard deviation 7.1 kg .
Find the probability that a randomly chosen athlete
(a) is taller than 188 cm ,
(b) weighs less than 97 kg .
(c) Assuming that for these athletes height and weight are independent, find the probability that a randomly chosen athlete is taller than 188 cm and weighs more than 97 kg .

