Version A Nov 2018

A2 Tracking Test 2 PURE (out of 57)

70 minutes

1. (a) Use integration by parts to find:-

$$
\begin{equation*}
\int x e^{2 x-1} \mathrm{~d} x \tag{3}
\end{equation*}
$$

(b) Use integration by parts to find $\int \frac{1}{x^{3}} \ln x d x$.
2. (a) For $-\frac{\pi}{2} \leq y \leq \frac{\pi}{2}$, sketch the graph of $y=\mathrm{g}(x)$ where

$$
\begin{equation*}
\mathrm{g}(x)=\arcsin x, \quad-1 \leq x \leq 1 . \tag{2}
\end{equation*}
$$

(b) Find the exact value of x for which

$$
\begin{equation*}
3 \mathrm{~g}(x+1)+\pi=0 . \tag{3}
\end{equation*}
$$

3.

A curve has equation $3 x^{2}-y^{2}+x y=4$. The points P and Q lie on the curve. The gradient of the tangent to the curve is $\frac{8}{3}$ at P and at Q.
(a) Use implicit differentiation to show that $y-2 x=0$ at P and at Q.
(b) Find the coordinates of P and Q.

4

Figure 1
Figure 1 shows a sketch of part of the curve C with equation

$$
y=\mathrm{e}^{-2 x}+x^{2}-3
$$

The curve C crosses the y-axis at the point A.
The line l is the normal to C at the point A.
(a) Find the equation of l, writing your answer in the form $y=m x+c$, where m and c are constants.

The line l meets C again at the point B, as shown in Figure 1.
(b) Show that the x coordinate of B is a solution of

$$
\begin{equation*}
x=\sqrt{1+\frac{1}{2} x \mathrm{e}^{2 x}} \tag{2}
\end{equation*}
$$

Using the iterative formula

$$
x_{n+l}=\sqrt{1+\frac{1}{2} x_{n} \mathrm{e}^{2 x_{n}}}
$$

with $x_{1}=1$
(c) find x_{2} and x_{3} to 3 decimal places.

5 (i) Using the identity for $\tan (A \pm B)$, solve, for $-90^{\circ}<x<90^{\circ}$,

$$
\begin{equation*}
\frac{\tan 2 x+\tan 32^{\circ}}{1-\tan 2 x \tan 32^{\circ}}=5 \tag{4}
\end{equation*}
$$

Give your answers, in degrees, to 2 decimal places.
(ii) (a) Using the identity for $\tan (A \pm B)$, show that

$$
\tan \left(3 \theta-45^{\circ}\right) \equiv \frac{\tan 3 \quad 1}{1+\tan 3}, \quad \theta \neq(60 n+45)^{\circ}, n \in \mathbb{Z}
$$

(2)
(b) Hence solve, for $0<\theta<180^{\circ}$,

$$
\begin{equation*}
(1+\tan 3 \theta) \tan \left(\theta+28^{\circ}\right)=\tan 3 \theta-1 \tag{4}
\end{equation*}
$$

6.

Figure 2

Figure 2 shows a sketch of the curve with equation $y=\sqrt{(3-x)(x+1)}, 0 \leq x \leq 3$.
The finite region R, shown shaded in Figure 2, is bounded by the curve, the x-axis, and the y-axis.
(a) Use the substitution $x=1+2 \sin \theta$ to show that

$$
\int_{0}^{3} \sqrt{(3-x)(x+1)} \mathrm{d} x=k \int_{-\frac{\pi}{6}}^{\frac{\pi}{2}} \cos ^{2} \theta \mathrm{~d} \theta
$$

where k is a constant to be determined.
(b) Hence find, by integration, the exact area of R.
a) Express $2 \sin \theta-4 \cos \theta$ in the form $R \sin (\theta-\alpha)$, where R and α are constants, $\mathrm{R}>0$ and $0<\frac{\alpha}{2}<\frac{\pi}{2}$. Give the exact value of R and the value of α, in radians to 3 decimal places. (3)

$$
H(\theta)=4+5(2 \sin 3 \theta-4 \cos 3 \theta)^{2}
$$

Find:
b) i) the maximum value of $H(\theta)$
ii) the smallest value of θ, for $0 \leq \theta \leq \pi$, at which this maximum occurs.

Find:
c) i) the minimum value of $H(\theta)$
ii) the largest value of θ, for $0 \leq \theta \leq \pi$, at which this minimum occurs

Mark Scheme (pure)

1.

(a) $\quad \mathrm{I}=\int x e^{2 x-1} \mathrm{~d} x$

$$
\begin{array}{ll}
u=x & \frac{d v}{d x}=e^{2 x-1} \\
\frac{d u}{d x}=1 & v=\frac{1}{2} e^{2 x-1}
\end{array}
$$

$$
\mathrm{I}=\frac{1}{2} x e^{2 x-1}-\int \frac{1}{2} e^{2 x-1} d x
$$

$$
\mathrm{I}=\frac{1}{2} x e^{2 x-1}-\frac{1}{4} e^{2 x-1}+C
$$

$$
-\frac{1}{2} x^{-2} \ln x-\int-\frac{1}{2} x^{-3} d x
$$

$$
-\frac{1}{2} x^{-2} \ln x-\frac{1}{4} x^{-2}+c
$$

M 1 for seperating into a u and derivaive of v . A1 for correct table.
M1 for using parts formula. A1 for correct answer.
2.
(a)

(b)

$$
\begin{aligned}
3 \arcsin (x+1)+\pi=0 \Rightarrow & \arcsin (x+1)=-\frac{\pi}{3} \\
& \Rightarrow(x+1)=\sin \left(-\frac{\pi}{3}\right) \\
& \Rightarrow x=-1-\frac{\sqrt{3}}{2}
\end{aligned}
$$

(a) $3 x^{2}-y^{2}+x y=4$ (eqn *)
$6 x-2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}+\left(\underline{y+x \frac{\mathrm{~d} y}{\mathrm{~d} x}}\right)=\underline{0}$
$\left\{\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{-6 x-y}{x-2 y}\right\}$ or $\left\{\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{6 x+y}{2 y-x}\right\}$ not necessarily required.
$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{8}{3} \Rightarrow \frac{-6 x-y}{x-2 y}=\frac{8}{3}$
giving $-18 x-3 y=8 x-16 y$
giving $13 y=26 x$
Hence, $y=2 x \Rightarrow y-2 x=0$

Differentiates implicitly to include either
$\pm k y \frac{\mathrm{~d} y}{\mathrm{~d} x}$ or $x \frac{\mathrm{~d} y}{\mathrm{~d} x}$. (Ignore $\left(\frac{\mathrm{d} y}{\mathrm{~d} x}=\right)$)
Correct application () of product rule B1
$\left(3 x^{2}-y^{2}\right) \rightarrow\left(6 x-2 y \frac{\mathrm{~d} y}{\mathrm{dx}}\right)$ and $(4 \rightarrow \underline{0})$
A1

Substituting $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{8}{3}$ into their equation.
M1*
Attempt to combine either terms in x or terms in y together
to give either $a x$ or $b y$.
simplifying to give $y-2 x=0 \mathbf{A G}$
(b) At $P \& Q, y=2 x$. Substituting into eqn *
gives $3 x^{2}-(2 x)^{2}+x(2 x)=4$
Simplifying gives, $x^{2}=4 \Rightarrow \underline{x= \pm 2}$
$y=2 x \Rightarrow y= \pm 4$
Hence coordinates are $(2,4)$ and $(-2,-4)$

Attempt replacing y by $2 x$ in at least one of the y terms in eqn *
M1
Either $x=2$ or $x=-2$
Both $(2,4)$ and $(-2,-4)$
dM1*
A1 cso 6
4.
4.(a)

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=-2 \mathrm{e}^{-2 x}+2 x
$$

At $x=0 \quad \frac{\mathrm{~d} y}{\mathrm{~d} x}=-2 \Rightarrow \frac{\mathrm{~d} x}{\mathrm{~d} y}=\frac{1}{2}$
Equation of normal is $y-(-2)=\frac{1}{2}(x-0) \Rightarrow y=\frac{1}{2} x-2$
(b) $y=\mathrm{e}^{-2 x}+x^{2}-3$ meets $y=\frac{1}{2} x-2$ when $\mathrm{e}^{-2 x}+x^{2}-3=" \frac{1}{2} x-2 "$

$$
x^{2}=1+\frac{1}{2} x-\mathrm{e}^{-2 x}
$$

M1A1

M1
M1 A1
(5)

M1
(c)

$$
\begin{aligned}
& x_{2}=\sqrt{1+0.5-\mathrm{e}^{-2}} \\
& x_{2}=1.168, x_{3}=1.220
\end{aligned}
$$

(2)
c) $\quad \begin{aligned} & x_{2}=\sqrt{1+0.5-\mathrm{e}^{-2}} \\ & x_{2}=1.168, x_{3}=1.220\end{aligned}$

$$
x=\sqrt{1+\frac{1}{2} x-\mathrm{e}^{-2 x}} \quad * \left\lvert\, \begin{aligned}
& \mathrm{A} 1 * \\
& \mathrm{M} 1 \\
& \mathrm{~A} 1
\end{aligned}\right.
$$

5.

6.
(a)
$A=\int_{0}^{3} \sqrt{(3-x)(x+1)} \mathrm{d} x, x=1+2 \sin \theta$
$\frac{\mathrm{~d} x}{\mathrm{~d} \theta}=2 \cos \theta$
$\frac{\mathrm{~d} x}{\mathrm{~d} \theta}=2 \cos \theta$ or $2 \cos \theta$ used correctly
in their working. Can be implied.

B1

Note: $\mathrm{d} \theta$ is required here.

See notes
and $3=1+2 \sin \theta$ or $2=2 \sin \theta$ or $\sin \theta=1 \Rightarrow \theta=\frac{\pi}{2}$

