The radius, r cm, of a circle is increasing at the constant rate of 3 cm s^{-1} .

Find the rate at which the area of the circle is increasing when its radius is 13.5 cm.

The side of a cube of length x cm, is increasing at the constant rate of 1.5 cm s⁻¹.

Find the rate at which the volume of the cube is increasing when its side is 6 cm.

The surface area, $S \text{ cm}^2$, of a sphere is increasing at the constant rate of 512 cm² s⁻¹.

The surface area of a sphere is given by

$$S=4\pi r^2,$$

where r cm is its radius.

Find the rate at which the radius r of the sphere is increasing, when the sphere's radius has reached 8 cm.

$$x = 4\sin\theta + 7\cos\theta.$$

The value of θ is increasing at the constant rate of 0.5, in suitable units.

Find the rate at which x is changing, when $\theta = \frac{\pi}{2}$.

Fine sand is dropping on a horizontal floor at the constant rate of $4 \text{ cm}^3 \text{s}^{-1}$ and forms a pile whose volume, $V \text{ cm}^3$, and height, h cm, are connected by the formula

$$V = -8 + \sqrt{h^4 + 64} \ .$$

Find the rate at which the height of the pile is increasing, when the height of the pile has reached $2\ cm$.

$$y = \frac{1}{4}\pi x^2 (4-x)$$
.

The variable y is changing with time t, at the constant rate of 0.2, in suitable units.

Find the rate at which x is changing with respect to t, when x = 2.

Liquid is pouring into a container at the constant rate of 30 cm³s⁻¹.

The container is initially empty and when the height of the liquid in the container is h cm the volume of the liquid, V cm³, is given by

$$V = 36h^2$$

- a) Find the rate at which the height of the liquid in the container is rising when the height of the liquid reaches 3 cm.
- b) Determine the rate at which the height of the liquid in the container is rising 12.5 minutes after the liquid started pouring in.

The radius
$$R$$
 of a circle, in cm, at time t seconds is given by

$$R=10\left(1-e^{-kt}\right),\,$$

where k is a positive constant and t > 0.

Show that if A is the area of the circle, in cm^2 , then

$$\frac{dA}{dt} = P k(e^{-kt} - e^{-2kt})$$
. State the exact value of P

C=
$$7\pi$$

B= 18π

C= 72
 $7=81\pi$
 $1=127$
 $1=15$
 $1=127$
 $1=16$
 $1=16$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=126$
 $1=1$

The correct letters spell, in order, a south American city.

$$91\pi \approx 254 \text{ cm}^2 \text{ s}^{-1}$$

$$(2)$$
 $162 \text{ cm}^3 \text{ s}^{-1}$

$$\frac{8}{\pi} \approx 2.55 \text{ cm s}^{-1}$$

$$\boxed{5} \approx 2.24 \text{ cm s}^{-1}$$

$$\frac{1}{5\pi} \approx 0.0637$$

$$\frac{5}{36} = 0.139 \text{ cm s}^{-1}$$

$$\frac{5}{36} = 0.139 \text{ cm s}^{-1}$$
, $\frac{1}{60} = 0.0167 \text{ cm s}^{-1}$