Further Trigonometry (R Forms)

1. $\mathrm{f}(x)=12 \cos x-4 \sin x$.

Given that $\mathrm{f}(x)=R \cos (x+\alpha)$, where $R \geq 0$ and $0 \leq \alpha \leq 90^{\circ}$,
(a) find the value of R and the value of α.
(b) Hence solve the equation $12 \cos x-4 \sin x=7$ for $0 \leq x<360^{\circ}$, giving your answers to one decimal place.
(c) (i) Write down the minimum value of $12 \cos x-4 \sin x$.
(ii) Find, to 2 decimal places, the smallest positive value of x for which this minimum value occurs.
2. A curve satisfies the equation $y=\sqrt{ } 3 \cos x+\sin x$.
(a) Express the equation of the curve in the form $y=R \sin (x+\alpha)$, where R and α are constants, $R>0$ and $0<\alpha<\frac{\pi}{2}$.
(b) Find the values of $x, 0 \leq x<2 \pi$, for which $y=1$.
3. (a) Express $3 \sin x+2 \cos x$ in the form $R \sin (x+\alpha)$ where $R>0$ and $0<\alpha<\frac{\pi}{2}$.
(b) Hence find the greatest value of $(3 \sin x+2 \cos x)^{4}$.
(c) Solve, for $0<x<2 \pi$, the equation $3 \sin x+2 \cos x=1$, giving your answers to 3 decimal places.
4. $\mathrm{f}(x)=5 \cos x+12 \sin x$.

Given that $\mathrm{f}(x)=R \cos (x-\alpha)$, where $R>0$ and $0<\alpha<\frac{\pi}{2}$,
(a) find the value of R and the value of α to 3 decimal places.
(b) Hence solve the equation $5 \cos x+12 \sin x=6$ for $0 \leq x<2 \pi$.
(c) (i) Write down the maximum value of $5 \cos x+12 \sin x$.
(ii) Find the smallest positive value of x for which this maximum value occurs.
5. A curve C has equation $y=3 \sin 2 x+4 \cos 2 x, \quad-\pi \leq x \leq \pi$.

The point $A(0,4)$ lies on C.
(a) Find an equation of the normal to the curve C at A.
(b) Express y in the form $R \sin (2 x+\alpha)$, where $R>0$ and $0<\alpha<\frac{\pi}{2}$. Give the value of α to

3 significant figures.
(c) Find the coordinates of the points of intersection of the curve C with the x-axis. Give your answers to 2 decimal places.
6. (a) Using the identity $\cos (A+B) \equiv \cos A \cos B-\sin A \sin B$, prove that $\cos 2 A \equiv 1-2 \sin ^{2} A$.
(b) Show that $2 \sin 2 \theta-3 \cos 2 \theta-3 \sin \theta+3 \equiv \sin \theta(4 \cos \theta+6 \sin \theta-3)$.
(c) Express $4 \cos \theta+6 \sin \theta$ in the form $R \sin (\theta+\alpha)$, where $R>0$ and $0<\alpha<\frac{1}{2} \pi$.
(d) Hence, for $0 \leq \theta<\pi$, solve $2 \sin 2 \theta=3(\cos 2 \theta+\sin \theta-1)$, giving your answers in radians to 3 significant figures, where appropriate.

