Hinges

1.

Figure 1

A uniform beam $A B$ of mass 2 kg is freely hinged at one end A to a vertical wall. The beam is held in equilibrium in a horizontal position by a rope which is attached to a point C on the beam, where $A C=0.14$ m . The rope is attached to the point D on the wall vertically above A, where $\angle A C D=30^{\circ}$, as shown in Figure 1. The beam is modelled as a uniform rod and the rope as a light inextensible string. The tension in the rope is 63 N .

Find
(a) the length of $A B$,
(b) the magnitude of the resultant reaction of the hinge on the beam at A.
2.

Figure 2
A uniform $\operatorname{rod} A B$, of length 1.5 m and mass 3 kg , is smoothly hinged to a vertical wall at A. The rod is held in equilibrium in a horizontal position by a light strut $C D$ as shown in Figure 2. The rod and the strut lie in the same vertical plane, which is perpendicular to the wall. The end C of the strut is freely jointed to the wall at a point 0.5 m vertically below A. The end D is freely joined to the rod so that $A D$ is 0.5 m .
(a) Find the thrust in $C D$.
(b) Find the magnitude and direction of the force exerted on the $\operatorname{rod} A B$ at A.
3.

Figure 3
Figure 3 shows a uniform rod $A B$ of mass m and length $4 a$. The end A of the rod is freely hinged to a point on a vertical wall. A particle of mass m is attached to the rod at B. One end of a light inextensible string is attached to the rod at C, where $A C=3 a$. The other end of the string is attached to the wall at D, where $A D=$ $2 a$ and D is vertically above A. The rod rests horizontally in equilibrium in a vertical plane perpendicular to the wall and the tension in the string is T.
(a) Show that $T=m g \sqrt{ } 13$.

The particle of mass m at B is removed from the rod and replaced by a particle of mass M which is attached to the rod at B. The string breaks if the tension exceeds $2 m g \downarrow 13$. Given that the string does not break,
(b) show that $M \leq \frac{5}{2} m$.
1.

$\mathrm{M}(A) 63 \sin 30.14=2 g . d$
Solve: $d=0.225 \mathrm{~m}$
Hence $A B=\underline{45 \mathrm{~cm}}$
$\mathrm{R}(\rightarrow) \quad X=63 \cos 30(\approx 54.56)$
$\mathrm{R}(\uparrow) \quad Y=63 \sin 30-2 g \quad(\approx 11.9)$

$$
R=\sqrt{ }\left(X^{2}+Y^{2}\right) \approx \underline{55.8,55.9 \text { or } 56 \mathrm{~N}}
$$

$$
\begin{aligned}
& \text { A } \begin{array}{l}
\text { Taking moments about A: } \\
3 g \times 0.75=\frac{T}{\sqrt{2}} \times 0.5
\end{array} \\
& \leftarrow \pm H=3 \sqrt{2} g \times \frac{7.5}{5}=\frac{9 \sqrt{2} g}{2}(=62.4 N) \\
& \leftarrow \pm \frac{T}{\sqrt{2}}\left(=\frac{9 g}{2} \approx 44.1 N\right) \\
& \uparrow \pm V+\frac{T}{\sqrt{2}}=3 g \quad\left(\square V=3 g-\frac{9 g}{2}=\frac{-3 g}{2} \approx-14.7 \square\right. \\
& \Rightarrow|R|=\sqrt{81+9} \times \frac{g}{2} \approx 46.5(N)
\end{aligned}
$$

at angle $\tan ^{-1} \frac{1}{3}=18.4^{\circ}$ (0.322 radians) below the line of BA
161.6° (2.82 radians) below the line of AB (108.4° or 1.89 radians to upward vertical)
2.

$\mathrm{M}(A) \quad 3 a \times T \cos \theta=2 a m g+4 a m g$

$$
\begin{gathered}
\cos \theta=\left(\frac{2}{\sqrt{9}+4}=\right) \frac{2}{\sqrt{13}} \\
\frac{6}{\sqrt{13}} T=0 m g \\
T=m g \sqrt{13} *
\end{gathered}
$$

$3 a \times T \times \cos \theta=2 a m g+4 a M g$

$$
T=\frac{(2 m g+4 \sin)}{6} \sqrt{13} a^{2} 2 m g \sqrt{13}
$$

$m g+2 M g<6 m g$
$M \leq \frac{5}{z}^{m}$ *

