Cobweb and Staircase diagrams

1) a) i) Rearrange $2 x^{3}=3 x-5$ in the form $x_{n+1}=\sqrt[3]{\left(A x_{n}+B\right)}$
ii) Starting with $x_{1}=1$, find $x_{2}, x_{3}, x_{4}, x_{5}, x_{6}$. Give each answer correct to 3 s.f.
iii) Draw a cobweb or staircase diagram to show whether this iteration converges to a root or diverges
2) b) i) Rearrange $2 x^{3}=3 x-5$ in the form $x_{n+1}=C x^{3}+D$
ii) Starting with $x_{1}=1$, find x_{2}, x_{3}, x_{4} Give each answer correct to 3 s.f.
iii) Draw a cobweb or staircase diagram to show whether this iteration converges to a root or diverges
3) c) i) Rearrange $2 x^{3}=3 x-5$ in the form $x_{n+1}=\frac{E}{x^{2}}+\frac{F}{x^{3}}$
ii) Starting with $x_{1}=1$, find x_{2}, x_{3}, x_{4} Give each answer correct to 3 s.f.
iii) Draw a cobweb or staircase diagram to show whether this iteration converges to a root or diverges

1d) Use your answers to 1a), 1b) and 1c) to solve the equation $2 x^{3}=3 x-5$ correct to 3 s.f.
2 a) i) Rearrange $x^{3}=4 x^{2}-1$ in the form $x_{n+1}=\sqrt[3]{(}\left(A x_{n}^{2}+B\right)$
ii) Starting with $x_{1}=1$, find x_{2}, x_{3}, x_{4}. Give each answer correct to 3 s.f. Without writing down each intermediate term, write down x_{100} to 3 s.f.
iii) Draw a cobweb or staircase diagram to show whether this iteration converges to a root or diverges

2 b) i) Rearrange $x^{3}=4 x^{2}-1$ in the form $x_{n+1}=\sqrt{ }\left(C x_{n}^{3}+D\right)$
ii) Starting with $x_{1}=1$, find x_{2}, x_{3}, x_{4}. Give each answer correct to 3 s.f. Without writing down each intermediate term, write down x_{100} to 3 s.f.
iii) Draw a cobweb or staircase diagram to show whether this iteration converges to a root or diverges

2c) There is a third solution to $x^{3}=4 x^{2}-1$ which is $x=-0.473$. Rearrange $x^{3}=4 x^{2}-1$ in such a way as to find an iteration that converges to $x=-0.473$

2d) Use your answers to 2 a), 2 b) and 2 c) to solve the equation $x^{3}=4 x^{2}-1$ correct to 3 s.f.

1. a) Show that the equation $\mathrm{x}^{3}-10 \mathrm{x}+1=0$ can be arranged to the form $x=\frac{x^{3}+1}{10}$
b) Use this rearrangement to form an iterative formula and use it to find, correct to 4 s.f., the root that lies between 0 and 1 .
2. Assuming the sequences defined by the following iterative formulae converge, find, in the form $f(x)=0$ the equation each would solve.
$x_{n+1}=\frac{x_{n}^{2}+1}{4}, \quad x_{n+1}=\frac{1}{5}\left(4 x_{n}+\frac{50}{x_{4}^{4}}\right), \quad x_{n+1}=\frac{\sin x_{n}-x_{n}+2}{3+x_{n}}$
3. a) The equation $x^{3}-5 x-2=0$ has a root between 2 and 3 . Use the iterative formula $x_{n+1}=\frac{2 x_{n}^{3}+2}{3 x_{n} 2-5}$ starting with $x_{1}=2$, to find x_{2}, x_{3}, x_{4} to 4 d.p.
b) Show that the root is 2.414 correct to 3 decimal places.
c) Hence find, correct to 2 d.p. a root of $2^{3 x}-5 \times 2^{x}-2=0$
