A particle is projected vertically upwards with a speed of $30 \mathrm{~ms}^{-1}$ from a point $A$. The point $B$ is $h$ metres above A. The particle moves freely under gravity and is above B for 2.4 seconds. Calculate the value of $h$.

The particle reaches a highest point. Let's call it $C$. At this point $v=0$. The journey from $B$ to $D$ takes 2.4 seconds so the journey from $B$ to $C$ takes 1.2 seconds


There are two ways of doing this

## Method 1

Consider the journey from $A$ to $C$
$s=\quad u=30 \quad a=0 \quad t=$ ?

Let's find t
$v=u+a t$ leads to $\mathrm{t}=\frac{150}{49}$
The journey from B to $C$ takes 1.2 seconds (ask me if you don't understand)
So the journey from A to C takes $\frac{150}{49}-1.2=\frac{456}{245}$
Now consider the journey from $A$ to $C$
$\mathrm{s}=\mathrm{h}$
$u=30$
$\mathrm{v}=$
$a=-9.8$
$t=\frac{456}{245}$
$s=u t+\frac{1}{2} a t^{2}$ leads to $h=38.86=39 \mathrm{~m}(2$ s.f.)

## Method 2

Consider the journey from $B$ to $C$
$s=\quad u=? \quad \mathrm{v}=0 \quad \mathrm{a}=-9.8 \quad \mathrm{t}=1.2$ (ask me if you don't
understand)
$v=u+a t$ leads to $u=\frac{294}{25}$
Consider the journey from A to B
$\mathrm{s}=\mathrm{h}$
$u=30$
$v=\frac{294}{25}$
$a=-9.8$
$t=$
$v^{2}=u^{2}+2 a s$ leads to $\mathrm{h}=38.86=39 \mathrm{~m}(2$ s.f. $)$

