Coded data will always be in the form $Y=a X+b$
If you can rewrite the equation given to you in this form, then finding the mean and standard deviation of your coded data becomes very simple.

Mean of coded data: $\bar{Y}=a \bar{X}+b$
Standard deviation of coded data: $\sigma_{y}=a \sigma_{x}$

1) A meteorologist collected data on the annual rainfall, $x \mathrm{~mm}$, at six randomly selected places.

The data was coded using $s=0.01 x-10$ and the following summations were obtained: $\quad \sum s=16.1, \quad \sum s^{2}=$ 147.03

Work out an estimate for the standard deviation of the actual annual rainfall.
2) The weekly income, i, of 100 women workers was recorded.

The data coded using $y=\frac{i-90}{100}$ and the following summations were obtained:
$\sum y=131, \sum y^{2}=176.84$
Estimate the standard deviation of the actual women workers' weekly income.
3) Find P and Q in each of these diagrams (the particles are held in equilibrium)

4) A particle is held at rest on a rough plane which is inclined to the horizontal at an angle α, where $\tan \alpha=0.75$. The coefficient of friction between the particle and the plane is 0.5 . The particle is released and slides down the plane. Find
a the acceleration of the particle,
b the distance it slides in the first 2 seconds.

Answers

1) $\sigma_{s}=\sqrt{\left(\frac{\sum s^{2}}{6}\right)-\left(\frac{\sum s}{6}\right)^{2}}$
$=\sqrt{\left(\frac{147.03}{6}\right)-\left(\frac{16.1}{6}\right)^{2}}$
$=4.15989$
$\sigma_{s}=0.01 \sigma_{x}$
$\therefore \sigma_{x}=\frac{4.15989}{0.01}=4.16$ (3 s.f.)
2) 22.9 3) a) $P=7.07 \quad Q=7.07$
b) $P=4.73 \quad Q=4.20$
3) $1.96 \mathrm{~m} / \mathrm{s}^{2}$
b) 3.9 m down plane
