- 1 For each of the following.
 - i find the binomial expansion up to and including the x^3 term
 - ii state the range of values of x for which the expansion is valid.

- **a** $\sqrt{4+2x}$ **b** $\frac{1}{2+x}$ **c** $\frac{1}{(4-x)^2}$
- 2 $f(x) = (5 + 4x)^{-2}, |x| < \frac{5}{4}$

Find the binomial expansion of f(x) in ascending powers of x, up to and including the term in x^3 . Give each coefficient as a simplified fraction. (5 marks)

- 3 m(x) = $\sqrt{4-x}$, |x| < 4
 - a Find the series expansion of m(x), in ascending powers of x, up to and including the x^2 term. Simplify each term. (4 marks)
 - **b** Show that, when $x = \frac{1}{9}$, the exact value of m(x) is $\frac{\sqrt{35}}{3}$ (2 marks)
 - c Use your answer to part a to find an approximate value for $\sqrt{35}$, and calculate the percentage error in your approximation. (4 marks)
- 4 The first three terms in the binomial expansion of $\frac{1}{\sqrt{a+bx}}$ are $3 + \frac{1}{3}x + \frac{1}{18}x^2 + \dots$
 - a Find the values of the constants a and b.
 - **b** Find the coefficient of the x^3 term in the expansion.
- 5 $f(x) = \frac{3 + 2x x^2}{4 x}$

Prove that if x is sufficiently small, f(x) may be approximated by $\frac{3}{4} + \frac{11}{16}x - \frac{5}{64}x^2$.

1 **a** i
$$2 + \frac{x}{2} - \frac{x^2}{16} + \frac{x^3}{64}$$

ii
$$|x| < 2$$

b i
$$\frac{1}{2} - \frac{x}{4} + \frac{x^2}{8} - \frac{x^3}{16}$$

ii
$$|x| < 2$$

c i
$$\frac{1}{16} + \frac{x}{32} - \frac{3x^2}{256} + \frac{x^3}{256}$$

ii
$$|x| < 4$$

2
$$\frac{1}{25} - \frac{8}{125}x + \frac{48}{625}x^2 - \frac{256}{3125}x^3$$

3 a
$$2-\frac{x}{4}-\frac{x^2}{64}$$

b
$$m(x) = \sqrt{\frac{35}{9}} = \frac{\sqrt{35}}{\sqrt{9}} = \frac{\sqrt{35}}{3}$$

c 5.91609 (correct to 5 decimal places), $\% \text{ error} = 1.38 \times 10^{-4}\%$

4 a
$$\alpha = \frac{1}{9}$$
, $b = -\frac{2}{81}$ **b** $\frac{5}{486}$

b
$$\frac{5}{486}$$

5 For small values of
$$x$$
 ignore powers of x^3 and higher.

$$(4-x)^{-1} = \frac{1}{4} + \frac{x}{16} + \frac{x^2}{64} + \dots$$

Multiply by
$$(3 + 2x - x^2) = \frac{3}{4} + \frac{x}{2} - \frac{x^2}{4} + \frac{3x}{16} + \frac{x^2}{8} + \frac{3x^2}{64}$$

$$=\frac{3}{4}+\frac{11}{16}x-\frac{5}{64}x^2$$