- (i) Expand $(1 + ax)^{-4}$ in ascending powers of x, up to and including the term in x^2 . [3]
 - (ii) The coefficients of x and x^2 in the expansion of $(1 + bx)(1 + ax)^{-4}$ are 1 and -2 respectively. Given that a > 0, find the values of a and b.
- Find the first three terms in the expansion of $(9-16x)^{\frac{3}{2}}$ in ascending powers of x, and state the set of values
- (i) Expand $(1+2x)^{\frac{1}{2}}$ as a series in ascending powers of x, up to and including the term in x^3 . [3]
 - (ii) Hence find the expansion of $\frac{(1+2x)^{\frac{1}{2}}}{(1+x)^3}$ as a series in ascending powers of x, up to and including the term in x^3 . [5]
 - (iii) State the set of values of x for which the expansion in part (ii) is valid. [1]
- (i) Expand $(1-x)^{\frac{1}{2}}$ in ascending powers of x as far as the term in x^2 . [3]
 - (ii) Hence expand $(1-2y+4y^2)^{\frac{1}{2}}$ in ascending powers of y as far as the term in y^2 . [3]
- (i) Expand $(1+x)^{\frac{1}{3}}$ in ascending powers of x, up to and including the term in x^2 . [2]
 - (ii) (a) Hence, or otherwise, expand $(8+16x)^{\frac{1}{3}}$ in ascending powers of x, up to and including the term in x^2 . [4]
 - (b) State the set of values of x for which the expansion in part (ii) (a) is valid. [1]

$$\frac{7}{5} \times \frac{1}{5} \times \frac{1}$$