1) Solve the equation $32 \cos 5x + 203 \tan 10 x = 182$, given that x is small.

2) Given that $\cos x + \sin x = m$ and $\cos x - \sin x = n$, where m and n are constants, write down the value of $\cos 2x$ in terms of m and n

3) $\int (3x^2 + 10x)\sqrt{x^3 + 5x^2 + 9} \, dx$

4) Solve the equation $2 \sin 2x = 3 \tan x$, $0 \le x < 360^{\circ}$

1) Solve the equation $32 \cos 5x + 203 \tan 10 x = 182$, given that x is small.

2) Given that $\cos x + \sin x = m$ and $\cos x - \sin x = n$, where m and n are constants, write down the value of $\cos 2x$ in terms of m and n

3) $\int (3x^2 + 10x)\sqrt{x^3 + 5x^2 + 9} \, dx$

4) Solve the equation $2 \sin 2x = 3 \tan x$, $0 \le x < 360^{\circ}$

1) Solve the equation $32 \cos 5x + 203 \tan 10 x = 182$, given that x is small.

2) Given that $\cos x + \sin x = m$ and $\cos x - \sin x = n$, where m and n are constants, write down the value of $\cos 2x$ in terms of m and n

3) $\int (3x^2 + 10x)\sqrt{x^3 + 5x^2 + 9} \, dx$

4) Solve the equation $2 \sin 2x = 3 \tan x$, $0 \le x < 360^{\circ}$

1) Solve the equation $32 \cos 5x + 203 \tan 10 x = 182$, given that x is small.

2) Given that $\cos x + \sin x = m$ and $\cos x - \sin x = n$, where m and n are constants, write down the value of $\cos 2x$ in terms of m and n

3) $\int (3x^2 + 10x)\sqrt{x^3 + 5x^2 + 9} \, dx$

4) Solve the equation $2 \sin 2x = 3 \tan x$, $0 \le x < 360^{\circ}$

Answers

1) becomes a quadratic
$$40x^2 - 203x + 15 = 0$$

 $x = 5, \frac{3}{40}$ N.B. 5 is not small so $x = \frac{3}{40}$

2) *mn*

3)
$$\frac{2}{3}(x^3 + 5x^2 + 9)^{\frac{3}{2}} + c$$

4) 0, 30, 150, 180, 210, 330