

A golf ball P is projected with speed $35 \mathrm{~m} \mathrm{~s}^{-1}$ from a point A on a cliff above horizontal ground. The angle of projection is α to the horizontal, where $\tan \alpha=\frac{4}{3}$. The ball moves freely under gravity and hits the ground at the point B, as shown in the diagram.
(a) Find the greatest height of P above the level of A.

The horizontal distance from A to B is 168 m .
(b) Find the height of A above the ground.
(c) find the speed of P as it hits the ground at B.

A golf ball P is projected with speed $35 \mathrm{~m} \mathrm{~s}^{-1}$ from a point A on a cliff above horizontal ground. The angle of projection is α to the horizontal, where $\tan \alpha=\frac{4}{3}$. The ball moves freely under gravity and hits the ground at the point B, as shown in the diagram.
(a) Find the greatest height of P above the level of A.

The horizontal distance from A to B is 168 m .
(b) Find the height of A above the ground.
(c) find the speed of P as it hits the ground at B.

6. (a)	$\begin{gathered} 0=(35 \sin \alpha)^{2}-2 g h \\ h=40 \mathrm{~m} \end{gathered}$	$\begin{aligned} & \text { M1 A1 } \\ & \text { A1 (3) } \end{aligned}$
(b)	$x=168 \quad \Rightarrow \quad 168=35 \cos \square \cdot t \quad(\Rightarrow t=8 \mathrm{~s})$	M1 A1
	$\text { At } t=8, \quad y=35 \sin \alpha \times t-\frac{1}{2} g t^{2} \quad\left(=28.8-1 / 2 . g .8^{2}=-89.6 \mathrm{~m}\right)$	M1 A1
(c)	Hence height of $A=\underline{89.6 \mathrm{~m}}$ or 90 m	DM1 A1 (6)
	$1 / 2 m v^{2}=1 / 2 . m .35^{2}+m g .89 .6$	$\begin{aligned} & \text { M1 A1 } \\ & \text { A1 } \end{aligned}$ (3)
	$\Rightarrow v=\underline{54.6 \text { or } 55 \mathrm{~m} \mathrm{~s}^{-1}}$	

