Question	Sch	eme	Marks
1	$b^2 - 4ac < 0$ $(3k + 1)^2 + 4k < 0$	Correct use of discriminant.	M1
-	$9k^2 + 10k + 1 < 0$	Forms quadratic inequality.	A1
	(9k + 1)(k + 1) < 0 or $k = \frac{-10 \pm \sqrt{10^2 - 4 \times 9 \times 1}}{2 \times 9}$	Attempts to find critical values by solving the quadratic.	M1
-	$k = -1, -\frac{1}{9} \\ -1 < k < -\frac{1}{9}$		A1
	$-1 < k < -\frac{1}{9}$		A1
			5 marks
2 (a)	$(x-2)^2 + (y+1)^2 = 20$	Rearranges equation and attempts to complete the square for terms in either <i>x</i> or <i>y</i> .	M1
	$\frac{C(2,-1)}{r = \sqrt{20}}$	Correct coordinates given.	A1
	$r=\sqrt{20}$ (or $2\sqrt{5}$)	Exact value of radius seen. Ignore subsequent rounding.	A1
			3
(b)	$4^{2} + (-5)^{2} - 4 \times 4 + 2 \times (-5)$ = 15 [∴ P lies on the circle.]	Correct substitution of $x = 4$ and $y = -5$.	A1
			1
(c)	Gradient of radius $=\frac{-4}{2}=-2$	Correct value seen.	B1
	Gradient of tangent $=\frac{1}{2}$	Finds negative reciprocal of <i>their</i> radius gradient.	M1
	$y + 5 = \frac{1}{2}(x - 4)$ or $-5 = \frac{1}{2} \times 4 = c$	Substitutes <i>their</i> tangent gradient and $x = 4$ and $y = -5$ into either $(y - y_1) = m(x - x_1)$ or $y = mx + c$. This M1 dependent on previous M1.	dM1
	$y = \frac{1}{2}x - 7$ or x - 2y - 14 = 0	A correct equation seen. Do not penalise subsequent incorrect versions.	A1
			4
3 (a)	2 <i>x</i> = 240°, 300°, 600°, 660°	Evidence of finding values of 2x in range $0^{\circ} \le x \le 720^{\circ}$ (e.g. sketch of sine curve, CAST)	8 marks M1
	x = 120°, 150°, 300°, 330°	First A1 for two correct values. Second A1 for all four values.	A1 A1
(1)			3
(b)	$2(1-\sin^2\theta)+\sin\theta=1$	Attempts to use $\sin^2 \theta + \cos^2 \theta = 1$	M1

		to form quadratic equation in $\sin x$.	
	$2\sin^2\theta - \sin\theta - 1 = 0$	Correct quadratic equation.	A1
	$\sin\theta = -\frac{1}{2}, 1$	Finds two roots of quadratic	A 1
	$\sin\theta = -\frac{1}{2}, 1$	equation.	A1
	$\theta = \frac{\pi}{2}, \frac{7\pi}{6}, \frac{11\pi}{6}$	First A1 for any correct value of θ .	
	$\theta = \frac{1}{2}, \frac{1}{6}, \frac{1}{6}$	Second A1 for three correct values.	A1
	or	(Accept decimal equivalents and	A1
	$\theta = 1.57, 3.67, 5.76$	ignore any values outside the range).	
			5
			8 marks
4	$f(1) = 1^{3} + a + b + 8 = 0$ $f(2) = 2^{3} + 4a + 2b + 8 = 0$	Evidence of use of factor theorem.	M1
	a+b=-9	Simplifies to form at least one	A1
	2a+b=-8	correct equation.	AI
		Attempts to solve their simultaneous	N // 1
		equations	M1
	a = 1, b = -10	Correct values.	A1
			4 marks
	ALTERNATIVE METHOD		
	$f(x) = (x^2 - 3x + 2)(x + 4)$	Expresses correctly as product of	M1
	f(x) = (x - 3x + 2)(x + 4)	quadratic and linear function.	
	$f(x) = x^3 + x^2 - 10x + 8$	Expands to form correct cubic	A1
	f(x) = x + x - 10x + 0	equation.	AI
		Equates coefficients.	M1
	a = 1, b = -10	Correct values.	A1
			4 marks
5(a)	$y = (x+1)^2 - 2(x+1) + 4$	Evidence of use of $g(x + 1)$.	M1
	$y = x^2 + 3$	Expands and simplifies to form	A1
	y = x + 3	correct equation.	AI
			2
(b)	$y = 2(x^2 - 2x + 4)$	Evidence of use of $2g(x)$ (may be	M1
		implied by correct answer).	
	$y = 2x^2 - 4x + 8$	implied by correct answer).	A1
	$y = 2x^2 - 4x + 8$	implied by correct answer).	A1 2
		implied by correct answer).	
6 (a)	$A = 2\pi rh + 2\pi r^2$ $(V =)\pi r^2 h = 500$	implied by correct answer). Implied by correct answer). Implied by correct equations for A and V.	2
6 (a)	$A = 2\pi rh + 2\pi r^2$ $(V =)\pi r^2 h = 500$		2 4 marks
6 (a)	$A = 2\pi rh + 2\pi r^2$ $(V =)\pi r^2 h = 500$	Forms correct equations for A and V. Uses a correct method to eliminate	2 4 marks B1
6 (a)	$A = 2\pi rh + 2\pi r^{2}$ $(V =)\pi r^{2}h = 500$ $h = \frac{500}{r^{2}}$ $A = 2\pi r^{2} + \frac{1000}{r^{2}}$	Forms correct equations for A and V. Uses a correct method to eliminate h from surface area equation.	2 4 marks B1 M1
6 (a) (b)	$A = 2\pi rh + 2\pi r^{2}$ $(V =)\pi r^{2}h = 500$ $h = \frac{500}{r^{2}}$ $A = 2\pi r^{2} + \frac{1000}{r^{2}}$	Forms correct equations for A and V. Uses a correct method to eliminate h from surface area equation.	2 4 marks B1 M1 A1
	$A = 2\pi rh + 2\pi r^2$ $(V =)\pi r^2 h = 500$	Forms correct equations for A and V. Uses a correct method to eliminate h from surface area equation. Convincing algebraic manipulation.	2 4 marks B1 M1 A1 3
	$A = 2\pi rh + 2\pi r^{2}$ $(V =)\pi r^{2}h = 500$ $h = \frac{500}{r^{2}}$ $A = 2\pi r^{2} + \frac{1000}{r^{2}}$ $\frac{dA}{dr} = 4\pi r - \frac{1000}{r^{2}}$ Minimum when $\frac{dA}{dr} = 0$	Forms correct equations for A and V.Uses a correct method to eliminate h from surface area equation.Convincing algebraic manipulation.Differentiates correctly.Puts their $\frac{dA}{dr} = 0$ and attempts to	2 4 marks B1 M1 A1 B1

(c)	$A = 2\pi (their r)^2 + \frac{1000}{(their r)}$ $A = 349 \text{ cm}^2$		M1
. –	$A = 349 \text{ cm}^2$	Ignore units.	A1
			2
			8 marks
7	ſ	Evidence of use of integration. As	
	$y = \int 6x^2 - 2x + 3 dx$	seen here or at least 2 correctly	M1
	5	integrated terms.	
	$(y =)2x^3 - x^2 + 3x(+c)$	Correct integral.	A1
		Substitutes $x = 1$, $y = 2$ to find c .	
	c = -2	Both x and y seen to be substituted,	M1
	· _	or no more than one error out of the	
		five terms.	
	$y = 2x^3 - x^2 + 3x - 2$	'y =' now required.	A1
			4 marks
8 (a)	$\frac{\log x - \log y^3 + \log z^4}{4}$	Use of power rule for logs.	M1
	$\frac{\log x - \log y^3 + \log z^4}{\log \frac{xz^4}{y^3}}$	сао	A1
	y ³		
	2x+1		2
(b)	$\ln \frac{2x+1}{x} = 2$	Forms single logarithm.	M1
	$\frac{\ln\frac{2x+1}{x} = 2}{\frac{2x+1}{x} = e^2}$	e^2 seen in a correct context	M1
	$x = \frac{1}{e^2 - 2}$	Correct rearrangement.	A1
			3
			5 marks
9 (a)	<i>y</i> < 1		
	or		B1
	f(x) < 1		
(1-)	1		1
(b)	$x = \frac{-1}{1}$	Evidence of rearrangement and	M1
-	y - 1	intention to change the subject	
	$x = \frac{-1}{y - 1}$ $f^{-1}(x) = \frac{-1}{x - 1}$	Do not allow y or $f(x) =$	A1
	Domain: $x < 1$	Follow through from their (a)	B1
	Range: $y > 0$		
	or	If x and y wrong way round, penalise	B1
	or $f^{-1}(x) > 0$	If x and y wrong way round, penalise 1 mark	B1
	_		4
	_	1 mark	
10	_	1 mark Attempts to use product rule. Given	4
10	_	1 mark Attempts to use product rule. Given for any form of the product rule	4
10	$f^{-1}(x) > 0$	1 mark Attempts to use product rule. Given for any form of the product rule written, or an attempt to substitute	4 5 marks
10	_	1 mark Attempts to use product rule. Given for any form of the product rule written, or an attempt to substitute into the formula if du/dx and dv/dx	4
10	$f^{-1}(x) > 0$	1 mark Attempts to use product rule. Given for any form of the product rule written, or an attempt to substitute into the formula if du/dx and dv/dx seen, or an attempt to substitute	4 5 marks
10	$f^{-1}(x) > 0$	1 mark Attempts to use product rule. Given for any form of the product rule written, or an attempt to substitute into the formula if du/dx and dv/dx seen, or an attempt to substitute into the formula where at least one	4 5 marks
10	$f^{-1}(x) > 0$ $\frac{dy}{dx} = v\frac{du}{dx} + u\frac{dv}{dx}$	1 mark Attempts to use product rule. Given for any form of the product rule written, or an attempt to substitute into the formula if du/dx and dv/dx seen, or an attempt to substitute	4 5 marks
10	$f^{-1}(x) > 0$ $\frac{dy}{dx} = v\frac{du}{dx} + u\frac{dv}{dx}$	1 mark Attempts to use product rule. Given for any form of the product rule written, or an attempt to substitute into the formula if du/dx and dv/dx seen, or an attempt to substitute into the formula where at least one of the derivatives is correct.	4 5 marks M1
10	$f^{-1}(x) > 0$	1 mark Attempts to use product rule. Given for any form of the product rule written, or an attempt to substitute into the formula if du/dx and dv/dx seen, or an attempt to substitute into the formula where at least one	4 5 marks

	$\left(\frac{dv}{dx}\right) = 2\sin x \cos x$		
	$\frac{(\frac{dv}{dx} =)2\sin x \cos x}{\frac{dy}{dx} = \sin^2 x \times 2e^{2x} + e^{2x}} \times 2\sin x \cos x}$	Substitutes <i>their</i> u , v , $\frac{du}{dx}$, $\frac{dv}{dx}$ correctly into product rule formula.	M1
	$\frac{dy}{dx} = 2e^{2x}\sin^2 x + 2e^{2x}\sin x\cos x$ $\frac{dy}{dx} = 2e^{2x}\sin x(\sin x + \cos x)$	Correct working leading to answer given. $\frac{dy}{dx}$ must be seen at some point in the working.	A1
			5 marks
11	$x^2 - x - 2 = 0$	Equates the two functions to form this quadratic equation.	M1
	x = 2, -1		A1
	$x = 2, -1$ Area under $y = 5 + 3x - x^2$: $A = \int_{-1}^{2} 5 + 3x - x^2 dx$	Attempts to find area under one of the curves using integration between <i>their</i> limits.	M1
	$A = \left[5x + \frac{3x^2}{2} - \frac{x^3}{3}\right]^2$	Integrates one of the functions correctly.	A1
	A = $\frac{33}{2}$ Area under $y = x^2 + x + 1 dx$:		A1
	Area under $y = x^2 + x + 1 dx$:		
	$A = \int_{-1}^{2} x^2 + x + 1 dx$	Integrates the other function correctly.	B1
	$A = \left[\frac{x^{3}}{3} + \frac{x^{2}}{2} + x\right]_{-1}^{2}$ $A = \frac{15}{2}$		
	$A = \frac{15}{2}$		A1
	Shaded area $=$ $\frac{33}{2} - \frac{15}{2}$	Finds difference between <i>their</i> two areas.	M1
	Shaded area $= 9$		A1
	ALTERNATIVE METHOD		
	$x^2 - x - 2 = 0$	Equates the two functions to form this quadratic equation.	M1
	x = 2, -1 f(x) = x ² + x + 1 - (5 + 3x - x ²)		A1
	or	Subtracts one equation from the other.	M1
	$f(x) = 5 + 3x - x^{2} - (x^{2} + x + 1)$ $f(x) = 2x^{2} - 2x - 4$ or $f(x) = -2x^{2} + 2x + 4$		A1
	$A = \int_{-1}^{2} 2 - 2x - 4 dx$ or $A = \int_{-1}^{2} -2x^{2} + 2x + 4 dx$		M1
	J_{-1} $A = \left[\frac{2x^3}{3} - x^2 - 4x\right]_{-1}^2$ or		A1

	2		1
	$A = \left[-\frac{2x^3}{3} + x^2 + 4x \right]_{-1}^2$		
	$A = \left(\frac{2}{3} \times 2^{3} - 2^{2} - 4 \times 2\right)$ $- \left(\frac{2}{3} \times (-1) - (-1)^{2} - 4 \times (-1)\right)$ or $A = \left(-\frac{2}{3} \times 2^{3} + 2^{2} + 4 \times 2\right)$ $- \left(-\frac{2}{3} \times (-1) + (-1)^{2} + 4 \times (-1)\right)$		A1
	A = -9 or A = 9		A1
	Shaded area = 9		A1
			9 marks
12 (a)	$v_x = 30 \cos 40^\circ$ $v_x = 22.98 \dots$	Writes correct expression for horizontal or vertical component of 30 ms ⁻¹ .	B1
	$t = \frac{34}{22.98}$	Divides 34 by <i>their</i> v_x .	M1
	$t = 1.479 \dots$ t = 1.48		A1
			3
(b)		Correct use of $v = u + at$ to find v_{y} .	M1
	$v_y = 30\sin 40^\circ - 9.8 \times (their t)$	Uses 30 sin 40° when considering vertical motion.	B1
	$v_y = 4.784 \dots$		A1
	$v_y = 4.78 \text{ ms}^{-1}$	Answer rounded correctly, and units given.	
			3
(c)	Vector triangle using their v_x and v_y .	Evidence of attempt to combine v_x and v_y to find speed or angle.	M1
	$v = \sqrt{4.79^2 + 22.98^2}$ $v = 23.5 \text{ ms}^{-1}$		A1
	$ heta=11.8^{\circ}$ above the horizontal.		M1 Uses correct triangle with their Vy A1
			3
			10 marks

13 (a)				
		Resolves forces perpendicular to		
	$B + T \sin 20^{\circ} - 50 \cos 20^{\circ}$	slope – sin and cos wrong way round	M1	
	$R + T\sin 20^\circ = 50g\cos 30^\circ$	ok, +ve and –ve incorrect, ok.		
		Correct equation.	A1	
	$T\cos 20^\circ = 50g\sin 30^\circ + F$	Resolves forces parallel to slope correctly.	M1 A1	
	$E0.a \sin 20^\circ \pm 0.2EB$	Uses $F = \mu R$ and attempts to solve		
	$T = \frac{50g\sin 30^{\circ} + 0.25R}{\cos 20^{\circ}}$	the two simultaneous equations to find T.	M1	
	T = 342 N		A1	
				6
(b)			M1	-
	$T\cos 20^\circ - 50g\sin 30^\circ - F$ $= 50 \times 5$	Method: Correct form of equation	M1 A1	
	$R + Tsin20^\circ = 50gcos30^\circ$	Substitutes <i>their R</i> and attempts to rearrange to find <i>T</i> .	M1	
	T = 586 N		A1	
				4
			10 mark	S
14	$\bar{y} = \frac{124}{25} = 4.96$		B1	
		Substitutes summary statistics		
	$\bar{y} = \frac{124}{25} = 4.96$ $\sigma_y = \sqrt{\frac{746}{25} - (their \bar{y})^2}$	correctly into formula for standard deviation.	M1	
	$\sigma_v = 2.29$	awrt	A1	
	$\bar{x} = 14.92$		B1	
	$\sigma_x = 4.58$	awrt	A1	
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		5 marks	5
15	$\begin{array}{c} H_0: p = 0.2 \\ H_1: p < 0.2 \end{array}$	Uses $p$ to write <b>both</b> hypotheses.	B1	
	<i>X~B</i> (40,0.2)	Writes or uses $B(40,0.2)$	M1	
	$P(X \le 3) = 0.0285$ or		A1	
	Critical region of $X \leq 3$			
	$[0.0285 < 0.05]$ significant, reject $H_0$	Do not allow conflicting statements.	M1	
	There is evidence to support the suppliers' <b>claim</b> . or The probability of a <b>ball</b> failing the bounce <b>test</b> is <b>less</b> than <b>0.2</b> .	Writes a correct contextual conclusion (to include the words in bold).	A1	
			5 marks	
16	$P(A \cap B)$	Attempts to use formula for	Jindiks	2
10	$P(A B) = \frac{P(A \cap B)}{P(B)}$ $P(A \cap B) = \frac{3}{7} \times \frac{7}{10}$	conditional probability.	M1	
	$P(A \cap B) = \frac{3}{7} \times \frac{7}{10}$ $= 0.3$		A1	
	Venn diagram	Correct diagram (in a box) with 0.2, 0.3, 0.4 and 0.1.	B1	
	$P(A) \times P(B) \neq P(A \cap B)$ $P(A) \times P(B) = 0.5 \times 0.7$		M1	

0.35 ≠ 0.3 ∴ Not independent.	
ALTERNATIVE METHOD	
$P(A B) \neq P(A)$	M1
$rac{3}{7}  eq 0.5$ .∴ Not independent.	A1
	5 marks