IMPLICIT DIFFERENTIATION

1)A circle has equation $x^{2}+y^{2}=25$

Use implicit differentiation to find an equation of the normal to the circle at the point with coordinates $(3,4)$.
2) A circle has equation $(x-4)^{2}+(y-3)^{2}=25$
a) Show clearly that $\frac{d y}{d x}=\frac{4-x}{y-3}$
b) Find an equation of the normal to the circle at the point $(8,6)$.
3) A curve has implicit equation $y^{2}+3 x y-2 x^{2}+17=0$.

Find an equation of the tangent to the curve at the point $(-2,3)$.
4) The equation of a curve is given implicitly by

$$
4 y+y^{2} e^{3 x}=x^{3}+C
$$

where C is a non zero constant.
a) Find a simplified expression for $\frac{d y}{d x}$

The point $P(1, k)$, where $k>0$, is a stationary point of the curve.
b) Find an exact value for C
5) A curve C has implicit equation $y=\frac{2 x+1}{x y+3}$
a) Find an expression for $\frac{d y}{d x^{\prime}}$, in terms of x and y.
b) Show that there is no point on C, where the tangent is parallel to the y axis.

Answers

1) $y=\frac{4}{3} x$
2) b) $4 y=3 x$
3) $x=-2$

4 a) $\frac{d y}{d x}=\frac{3\left(x^{2}-y^{2} e^{3 x}\right)}{2\left(2+y e^{3 x}\right)}$
b) $C=4 e^{-\frac{3}{2}}$

5 b) $\frac{d y}{d x}=\frac{2-y^{2}}{2 x y+3}$

