If $\sin(\theta + \alpha) = 2\sin\theta$, show clearly that

$$\tan\theta = \frac{\sin\alpha}{\alpha - \cos\alpha}$$

State a

(2)

By expanding $\tan(\theta + 45^{\circ})$ with a suitable value for θ , show clearly that $\tan 75 = a + \sqrt{b}$

a and b are integers. State a and b

(3)

By expanding $\sin(45^{\circ}-x)$ with a suitable value for x, show clearly that $\cos c = \int a + \int b$

a and b are integers. State a and b

(4)

$$\sin A = \frac{12}{13} \quad \text{and} \quad \cos B = \frac{4}{5}.$$

If A is obtuse and B is acute, show clearly that

$$\sin(A+B) = \frac{a}{b}$$

a and b are integers. State a and b

(5)

The constants a and b are such so that

$$\tan a = \frac{1}{3}$$
 and $\tan b = \frac{1}{7}$.

Determine the exact value of $\cot(a-b)$, showing all the steps in the workings.

6

$$\sin x = \frac{12}{13}$$
 and $\cos y = \frac{15}{17}$.

If x is obtuse and y is acute, show clearly that

$$\sin(x-y) = \frac{a}{b}$$

a and b are integers. State a and b

(7)

$$\cos \theta = -\frac{3}{5}$$
 and $\tan \varphi = \frac{24}{7}$.

If θ is reflex, and φ is also reflex, show clearly that $\sin(\Theta - \varphi) = \frac{\alpha}{6}$

a and b are integer. State a and b