I1	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
a	$\begin{aligned} & \log n=0.7606+0.0635 t \\ & c=10^{0.7606+0.0635 t} \\ & c=5.76 \times 1.16^{t} \quad(3 \text { s.f. }) \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	$\begin{aligned} & 1.1 \mathrm{a} \\ & 1.1 \mathrm{~b} \\ & 1.1 \mathrm{~b} \end{aligned}$	6th Understand exponential models in bivariate data.
		(3)		
b	a is a constant of proportionality.	A1	3.2a	6th Understand exponential models in bivariate data.
		(1)		
c	Extrapolation/out of the range of the data.	A1	2.4	4th Understand the concepts of interpolation and extrapolation.
		(1)		
(5 marks)				
Notes				

I2	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
a		B1 B1 B1	$\begin{aligned} & 2.5 \\ & 1.1 \mathrm{~b} \\ & 1.1 \mathrm{~b} \end{aligned}$	3rd Draw and use tree diagrams with three branches and/or three levels.
		(3)		
b	$\mathrm{P}\left(B \cap F^{\prime}\right)=0.35 \times 0.98$	M1	1.1b	5th Understand and calculate conditional probabilities in the context of tree diagrams.
	$=0.343$	A1	1.1b	
		(2)		
c	$\mathrm{P}(F)=0.4 \times 0.05+0.35 \times 0.02+0.25 \times 0.03$	M1	1.1b	5th Understand and calculate conditional probabilities in the context of tree diagrams.
	$=0.0345$	A1	1.1b	
		(2)		
d	$\mathrm{P}\left(C^{\prime} \mid F\right)=\frac{\mathrm{P}\left(C^{\prime} \cap F\right)}{\mathrm{P}(F)}=\frac{0.4 \times 0.05+0.35 \times 0.02}{0.0345}=\frac{0.027}{0.0345}$	$\begin{gathered} \text { M1 } \\ \text { A1ft } \end{gathered}$	$\begin{gathered} 3.1 \mathrm{~b} \\ 1.2 \end{gathered}$	5th Calculate conditional probabilities using formulae.
	0.7826... or $\frac{18}{23}$ (accept awrt 0.783)	A1	1.1b	
		(3)		
				(10 marks)
Notes				

13	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
a		B1	1.2	5th Understand the basic features of the normal distribution including parameters, shape and notation.
	170, 180 on axis	B1	1.1b	
	5\% and 20%	B1	1.1b	
		(3)		
b	$\begin{aligned} & \mathrm{P}(X<170)=0.05 \\ & \frac{170-\mu}{\sigma}=-1.6449 \\ & \mu=170+1.6449 \sigma \\ & \mathrm{P}(X>180)=0.2 \\ & \mu=180-0.8416 \sigma \end{aligned}$ Solving simultaneously gives: $\mu=176.615 \ldots$ (awrt 176.6) and $\sigma=4.021 \ldots$ (awrt 4.02)	$\begin{aligned} & \text { M1 } \\ & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	$\begin{gathered} 3.3 \\ 3.4 \\ \\ 1.1 \mathrm{~b} \\ 3.4 \\ 1.1 \mathrm{~b} \\ 1.1 \mathrm{~b} \\ 1.1 \mathrm{~b} \end{gathered}$	7th Find unknown means and/or standard deviations for normal distributions.
		(7)		
c	$\mathrm{P}($ All three are taller than 175 cm$)=0.656 \ldots{ }^{3}$	M1	1.1b	5th Understand informally the link to probability distributions.
	$=0.282 \ldots$ (using calculator) awrt 0.282	A1	1.1b	
		(2)		
				(12 marks)
Notes				

15	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
a	$T=$ hand assignments in on time, $D=$ start assignments on the day they are issued	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$	$\begin{aligned} & 2.5 \\ & 1.1 \mathrm{~b} \\ & 1.1 \mathrm{~b} \end{aligned}$	2nd Draw and use simple tree diagrams with two branches and two levels.
		(3)		
b i	$\mathrm{P}(T \cap D)=\mathrm{P}(T \mid D) \times \mathrm{P}(D)$	M1	3.1b	5th Understand and calculate conditional probabilities in the context of tree diagrams.
	$\begin{aligned} & =\frac{3}{5} \times \frac{11}{20} \\ & =\frac{33}{100} \text { or } 0.33 \end{aligned}$	A1	1.1b	
		(2)		
b ii	$\frac{3}{5} \times \frac{11}{20}+x \times \frac{2}{5}=\frac{2}{3}$	M1	3.1b	5th Understand and calculate conditional probabilities in the context of tree diagrams.
	$x=\frac{101}{120}$ or $0.841 \ldots$	A1	1.1b	
	$\mathrm{P}\left(T^{\prime \prime} \cap D^{\prime}\right)==\frac{2}{5}\left(1-\frac{101}{120}\right)$	M1	1.1b	
	$=\frac{19}{300}$ or $0.0633 \ldots$ (accept awrt 0.0633)	A1	1.1b	
		(4)		

c	$\mathrm{P}(T \cap D)=\frac{33}{100} \neq \mathrm{P}(T) \times \mathrm{P}(D)=\frac{2}{3} \times \frac{3}{5}=\frac{2}{5}$	M1	2.1	4th Understand and use the definition of independence in probability calculations.			
	So, T and D are not statistically independent.	A1	2.4				
	(2)		(11 marks)		$	$	$\mathrm{P}\left(T^{\prime} \cap D^{\prime}\right)=1-\mathrm{P}(T \cup D)$
:---							
$\mathrm{P}(T \cup D)=\frac{2}{3}+\frac{3}{5}-\frac{33}{100}$							
$\quad=\frac{281}{300}$							
$\mathrm{P}\left(T^{\prime} \cap D^{\prime}\right)=1-\frac{281}{300}=\frac{19}{300}$							

I6	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
a	A critical value is the point (or points) on the scale of the test statistic beyond which we reject the null hypothesis.	B1	1.2	5th Understand the language of hypothesis testing.
		(1)		
b	$\mathrm{H}_{0}: \rho=0, \mathrm{H}_{1}: \rho>0$ Critical value $=0.5494$ $0.714>0.5494$ (test statistic in critical region) There is evidence to reject H_{0} There is evidence that there is a positive correlation between the number of vehicles and road traffic accidents.	B1 M1 A1	$\begin{gathered} 2.5 \\ 1.1 \mathrm{~b} \\ 2.2 \mathrm{~b} \end{gathered}$	6th Carry out a hypothesis test for zero correlation.
		(3)		
c	$r=-7.0+0.02 v$	B1	1.2	4th Make predictions using the regression line within the range of the data.
		(1)		
d	Road fatalities per 100000 population.	B1	1.2	2nd Know and understand the language of correlation and regression.
		(1)		
e	Outside the range of the data used in the model. or This would require extrapolation.	B1	3.5b	4th Understand the concepts of interpolation and extrapolation.
		(1)		
(7 marks)				
Notes				

17	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
a	Moment from bus $=5000 \times 2 \times g$	M1	3.1a	5th Find resultant moments by considering direction.
	$=10000 \mathrm{~g}(\mathrm{~N} \mathrm{~m})$	A1	1.1b	
	Moment from gold $=1000 \times 12 \times g$	M1	3.1b	
	$=12000 \mathrm{~g}(\mathrm{~N} \mathrm{~m})$	A1	1.1b	
	Moment from people $=70 \times 8 \times n \times g$	M1	3.1a	
	$=560 \mathrm{ng}(\mathrm{N} \mathrm{m})$	A1	1.1b	
	Total moment $=(22000-560 n) g(\mathrm{~N} \mathrm{~m})$	A1	1.1b	
		(7)		
b	Forming an equation or inequality for n and solving to find ($n=39.28 \ldots$)	M1	1.1b	5th Solve equilibrium problems involving horizontal bars.
	Need 40 people.	A1	3.2a	
		(2)		
c	New moment from gold and extra person is $1070 \times 12 \times \mathrm{g}(\mathrm{N})$	M1	3.1a	5th Solve equilibrium problems involving horizontal bars.
	New total moment $=(22840-560 n) g(\mathrm{Nm})$	M1	1.1b	
	$n=40.78 \ldots$	A1	3.2a	
	42 people (including the extra)	A1	2.4	
		(4)		
				(13 marks)

18	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
a	Net force is $\mathbf{C}+\mathbf{W}$	M1	3.1b	$4^{\text {th }}$ Calculate resultant forces using vectors.
	$=\binom{5}{-1}$	A1	1.1b	
		(2)		
b	Use of Newton's 2nd Law.	M1	3.1b	5th Use Newton's second law to model motion in two directions.
	$\mathbf{a}=\frac{F}{m}$	M1	1.1b	
	$=\binom{50}{-10}$	A1	1.1b	
		(3)		
c	$\mathbf{s}=\mathbf{u} t+\frac{1}{2} \mathbf{a} t^{2}$	M1	1.1a	5th Use the equations of motion to solve problems in familiar contexts.
	$=\binom{1}{1} t+\frac{1}{2}\binom{50}{-10} t^{2}$	M1	1.1b	
	$x=t+25 t^{2}$	A1	1.1b	
	$y=t-5 t^{2}$	A1	1.1b	
		(4)		
d	Substitute $t=10$	M1	3.1b	5th Use the equations of motion to solve problems in familiar contexts.
	$x=2510$	A1	1.1b	
	$y=-490$	A1	1.1b	
	Distance travelled $=\sqrt{2510^{2}+(-490)^{2}}$	M1	1.1a	
	2557.38...(m) (Accept awrt 2560)	A1	3.2a	
		(5)		
				(14 marks)
Notes				

19	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
a	Figure 1 Force labels one mark each Allow explicit evaluation with g.	B2	2.5	4th Calculate moments.
		(2)		
b	Alice: Moment $=2 \times 50 \times g$	M1	1.1b	5th Calculate sums of moments.
	$=100 g(\mathrm{~N} \mathrm{~m})$	A1	1.1b	
	Bob: Moment $=(2-x) \times 80 \times g$	M1	3.4	
	$=80(2-x) g(\mathrm{~N} \mathrm{~m})$	A1	1.1b	
	Total clockwise moment $=20 g(4 x-3)(\mathrm{N} \mathrm{m})$	A1	1.1b	
		(5)		
c	Equating to 0 and solving	M1	3.4	5th Solve equilibrium problems involving horizontal bars.
	$x=0.75$ (m)	A1	1.1b	
		(2)		
d	Identifying 2 as a limit	M1	2.4	7th Solve problems involving bodies on the point of tilting.
	So tilts towards Alice when $0.75<x \leqslant 2$	A1	2.2a	
		(2)		
e	Any valid limitation. For example, Pivot not a point. Alice can't sit exactly on the end. The see-saw might bend.	A1	3.5	3rd Understand assumptions common in mathematical modelling.
		(1)		

I10	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
a	Use of $s=u t+\frac{1}{2} a t^{2}$	M1	1.1a	Resolve velocity into horizontal and vertical components.
	Initial velocity is $(\cos \theta, \sin \theta)$	A1	3.4	
	$x=t \cos \theta$	A1	1.1b	
	$y=t \sin \theta-5 t^{2}$	B1	1.1b	
		(4)		
b	Solve $y=0$ for t	M1	3.4	5th Model horizontal projection under gravity.
	$t(\sin \theta-5 t)=0$	A1	1.1b	
	$t=0$ or $t=\frac{\sin \theta}{5}$	A1	1.1b	
	$t=0$ is initial position so $t=\frac{\sin \theta}{5}$	M1	2.4	
	$x=\frac{\cos \theta \sin \theta}{5}=\frac{2 \sin \theta \cos \theta}{10}=\frac{\sin 2 \theta}{10}$	A1	1.1b	
		(5)		
c	Sketch of $\sin 2 \theta$ or other legitimate method.	M1	2.2a	6th Resolve velocity into horizontal and vertical components.
	Maximum is at $\theta=45^{\circ}$	A1	2.4	
		(2)		
d	Correct limitation. For example, air resistance.	B1	3.5b	3rd Understand assumptions common in mathematical modelling.
		(1)		
(12 marks)				
Notes				

I11	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
a	One correct force with correct label. Two more correct forces with correct labels.	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$	3rd Draw force diagrams.
		(2)		
b	Resolve vertically.	M1	1.1b	5th Calculate resultant forces in perpendicular directions.
	Weight $=8 \mathrm{~g}$	M1	1.1b	
	$=78.4$	M1	1.1b	
	Vertical part of normal reaction is $2 R \cos 40$	A1	1.1b	
	$2 R \cos 40=78.4$	M1	1.1b	
	Solve for R	M1	1.1b	
	$R=51.171 \ldots$ (N) accept awrt 51	A1	1.1b	
		(7)		
				(9 marks)

