H1	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
	<i>X</i> ~ females <i>X</i> ~ N(165, 9 ²), <i>Y</i> ~ males <i>Y</i> ~ N(178, 10 ²)	M1	3.3	5th
	P(X > 177) = P(Z > 1.33) (or = 0.0912)	M1	1.1b	Calculate probabilities for
	P(Y>190) = P(Z>1.20) (or = 0.1151)	A1	1.1b	the standard
	Therefore the females are relatively taller.	A1	2.2a	distribution using a calculator.
(4 marks)				

H2	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor	
a	$\log_{10} c = 1.89 - 0.0131t$	M1	1.1a	6th	
	$c = 10^{1.89 - 0.0131t}$	M1	1.1b	Understand	
	$c = 77.6 \times 0.970^{t}$ (3 s.f.)	A1	1.1b	exponential models in	
				bivariate data.	
		(3)			
b	b is the proportional rate at which the temperature changes per	A1	3.2a	6th	
	minute.			Understand exponential models in bivariate data.	
		(1)			
c	Extrapolation/out of the range of the data.	A1	2.4	4th	
				Understand the concepts of interpolation and extrapolation.	
		(1)			
(5 marks)					
	Notes				

НЗ	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor	
a	$\frac{29+21}{29+21+17+23+18+17} = \frac{50}{125}$	M1	1.1b	2nd Calculate	
	= 0.4	A1	1.1b	relative frequency tables and real data.	
		(2)			
b	$\frac{125 - 17}{125} = \frac{108}{125}$	M1	3.1a	4th Understand set	
	= 0.864	A1	1.1b	notation.	
		(2)			
с	$P(S \cap A) = \frac{17}{125} = 0.136 \neq P(S) \times P(A) = \frac{40}{125} \times \frac{64}{125} = 0.163$	M1	2.1	4th Understand and use the definition	
	So, <i>S</i> and <i>A</i> are not statistically independent.	A1	2.4	of independence in probability calculations.	
		(2)			
d	<i>B</i> and <i>C</i> are not mutally exclusive	B1	2.2a	3rd	
	Being in team <i>C</i> does not exclude the possibility of winning a bronze medal	B1	2.4	Understand and use the definition of mutually exclusive in probability calculations.	
		(2)			
e	$\frac{15+24+14}{125} = \frac{53}{125}$	M1	3.1b	5th Calculate conditional	
	= 0.424	A1	1.1b	probabilities using formulae.	
		(2)			
				(10 marks)	
	Notes				

H4	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
a	P(<i>M</i> < 850) = 0.3085 (using calculator)	B1	1.1b	5th Calculate probabilities for the standard normal distribution using a calculator.
		(1)		
b	P(M < a) = 0.1 and $P(M < b) = 0.9$	M1	3.1b	5th
	(using calculator) $a = 772$ g	A1	1.1b	Calculate probabilities for
	<i>b</i> = 1028 g	A1	1.1b	the standard normal distribution using a calculator.
		(3)		
(4 marks)				
Notes				

Н5	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
a	$H_0: \rho = 0, H_1: \rho < 0$	B1	2.5	6th
	Critical value = -0.6319	M1	1.1a	Carry out a
	$-0.6319 < -0.136$ no evidence to reject H_0 (test statistic not in critical region)			zero correlation.
	There is insufficient evidence to suggest that the weight of chickens and average weight of eggs are negatively correlated.	A1	2.2b	
		(3)		
b	Sensible explanation. For example, correlation shows there is <u>no (or extremely weak) linear realtionship</u> between the two variables.	B1	1.2	7th Interpret the results of a hypothesis test for zero correlation.
	For example, there could be a <u>non-linear relationship</u> between the two variables.	B1	3.5b	
		(2)		
(5 marks)				
Notes				

H6	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor		
a	n is large	B1	1.2	5th		
	<i>p</i> is close to 0.5	B1	1.2	Understand the binomial distribution (and its notation) and its use as a model.		
		(2)				
b	Mean = np	B1	1.2	5th		
	Variance = $np(1-p)$	B1	1.2	binomial distribution (and its notation) and its use as a model.		
		(2)				
с	There would be no batteries left.	B1	2.4	5th Select and critique a sampling technique in a given context.		
		(1)				
d	$H_0: p = 0.55 H_1: p > 0.55$	B1	2.5	5th Carry out 1-tail tests for the binomial distribution.		
		(1)				
e	$X \sim N(165, 74.25)$ P(X ≥ 183.5) = P(Z $\frac{183.5 - 165}{\sqrt{74.25}}$) = P(Z ≥ 2.146) =1 - 0.9838 = 0.0159 Reject H ₀ , it is in the critical region. There is evidence to support the manufacturer's claim.	B1 M1 M1 A1 A1 M1 A1	3.3 3.4 1.1b 1.1b 1.1b 1.1b 2.2b	7th Interpret the results of a hypothesis test for the mean of a normal distribution.		
		(7)				
	(13 marks)					
Notes						

H7	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
а	$X \sim$ women's body temperature $X \sim N(36.73, 0.1482)$	M1	3.3	5th
	P(X > 38.1) = 0.000186	B1	1.1b	Calculate probabilities for the standard normal distribution using a calculator.
		(2)		
b	Sensible reason. For example,	B1	2.2a	8th
	Call the doctor as very unlikely the temperature would be so high.			Solve real-life problems in context using probability distributions.
		(1)		
(3 marks)				
Notes				

H8	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
a	A statistic that is calculated from sample data in order to test a hypothesis about a population.	B1	1.2	5th Understand the language of hypothesis testing.
		(1)		
b	$\begin{split} H_0: \rho &= 0, H_1: \rho \neq 0 \\ p\text{-value} &< 0.05 \\ \end{split}$ There is evidence to reject H ₀ There is evidence (at 5% level) of a correlation between the daily mean temperature and daily mean pressure.	B1 M1 A1	2.5 1.1b 2.2b	6th Carry out a hypothesis test for zero correlation.
		(3)		
c	Two sensible interpretations or observations. For example, Two distinct distributions Similar gradients of regression line. Similar correlations for each season. Lower temperaure in autumn. More spread for the daily mean pressure in autumn.	B2	3.2a	4th Use the principles of bivariate data analysis in the context of the large data set.
		(2)		
(6 marks)				
Notes				

H9	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor		
a	Use of Newton's second law.	M1	3.1b	8th		
	$\mathbf{a} = \frac{\mathbf{F}}{2}$	M1	1.1b	Understand general kinematics		
	$= \begin{pmatrix} 4\\2 \end{pmatrix} t + \begin{pmatrix} 3\\-6 \end{pmatrix} t^2 (\mathrm{m \ s}^{-2})$	A1	1.1b	problems with vectors.		
		(3)				
b	Integrate a	M1	1.1a	8th		
	$\mathbf{v} = \begin{pmatrix} 2\\1 \end{pmatrix} t^2 + \begin{pmatrix} 1\\-2 \end{pmatrix} t^3 + \mathbf{c} \ (\mathrm{m \ s}^{-1})$	A1	1.1b	kinematics problems using calculus of		
	$\mathbf{c} = 0$ because initially at rest.	A1	2.4	vectors.		
	Integrate v	M1	1.1a			
	$\mathbf{r} = \begin{pmatrix} \frac{2}{3} \\ \frac{1}{3} \end{pmatrix} t^3 + \begin{pmatrix} \frac{1}{4} \\ -\frac{1}{2} \end{pmatrix} t^4 + \mathbf{c} (\mathbf{m})$	A1	1.1b			
	$\mathbf{c} = 0$ because initially at origin.	A1	2.4			
		(6)				
с	Subsititute $t = 1$	M1	1.1a	6th		
	$\mathbf{v} = \begin{pmatrix} 2\\1 \end{pmatrix} + \begin{pmatrix} 1\\-2 \end{pmatrix}$	M1	1.1b	Understand general kinematics problems with		
	$= \begin{pmatrix} 3 \\ -1 \end{pmatrix} (m s^{-1})$	A1	1.1b	vectors.		
		(3)				
	(12 marks)					
	Notes					

H11	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
а	Moment from bus = $5000 \times 2 \times g$	M1	3.1a	5th
	$= 10000g({ m N}{ m m})$	A1	1.1b	Find resultant moments by
	Moment from gold = $1000 \times 12 \times g$	M1	3.1b	considering direction.
	$= 12\ 000g\ ({ m N}{ m m})$	A1	1.1b	
	Moment from people = $70 \times 8 \times n \times g$	M1	3.1a	
	$= 560ng (\mathrm{N}\mathrm{m})$	A1	1.1b	
	Total moment = $(22\ 000 - 560n)g$ (N m)	A1	1.1b	
		(7)		
b	Forming an equation or inequality for <i>n</i> and solving to find $(n = 39.28)$	M1	1.1b	5th Solve equilibrium
	Need 40 people.	A1	3.2a	problems involving horizontal bars.
		(2)		
c	New moment from gold and extra person is $1070 \times 12 \times g$ (N)	M1	3.1a	5th
	New total moment = $(22840 - 560n)g$ (N m)	M1	1.1b	Solve equilibrium problems
	n = 40.78	A1	3.2a	involving horizontal bars.
	42 people (including the extra)	A1	2.4	
		(4)		
				(13 marks)

H10	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor	
a	Use of suvat equations	M1	1.1a	8th	
	$x = 10t\cos\theta$	A1	1.1b	Derive formulae for projectile	
	$y = 10t\sin\theta - \frac{1}{2}gt^2$	M1	1.1b	motion.	
	$=10t\sin\theta-5t^2$	A1	1.1b		
	Substitute $x = 10$ and $y = -5$	M1	1.1a		
	Solve <i>x</i> equation for <i>t</i>	M1	1.1b		
	$t = \frac{1}{\cos \theta}$	A1	1.1b		
	Substitute into y equation	M1	1.1a		
	$-5 = 10\tan\theta - 5\sec^2\theta$	A1	2.1		
	Use of $\sec^2 \theta = 1 + \tan^2 \theta$	M1	2.1		
	$(\tan \theta - 1)^2 = 1$ legitimately obtained	A1	2.1		
		(11)			
b	Solve for $\tan \theta$	M1	1.1a	8th	
	$\tan \theta = 0 \text{ or } \tan \theta = 2$	A1	1.1b	Solve problems in unfamiliar	
	$\theta = 0 \text{ or } 63.43(^{\circ}) \text{ (accept awrt } 63)$	A1	1.1b	contexts using the concepts of friction and motion.	
		(3)			
(14 marks)					
	Notes				

H12	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor	
a	Integrate a w.r.t. t	M1	1.1a	5th	
	$a = 180t - 180t^2$	A1	1.1b	Use integration to determine functions for velocity and/or displacement.	
		(2)			
b	$180t - 180t^2 > 40$	M1	3.1a	7th	
	20(3t-2)(3t-1) < 0	A1	1.1b	Solve general kinematics	
	$\frac{1}{3} < t < \frac{2}{3}$	A1	2.4	problems in less familiar contexts.	
	Breaking the speed limit between 20 and 40 minutes.	A1	3.2a		
		(4)			
с	Integrate v w.r.t. t	M1	1.1a	5th	
	$x = 90t^2 - 60t^3 (+C)$	A1	1.1b	Use integration to determine	
	When $t = 1, x = 30$	A1	3.1b	tunctions for velocity and/or	
	Average speed = $\frac{\text{distance}}{\text{time}}$	M1	1.1b	displacement.	
	30 km h^{-1}	A1	1.1b		
		(5)			
(11 marks)					
	Notes				