$A(2x+5) + B(5x-1) \circ 6x + 42$ MEquates the various terms.MEquating the coefficients of $x: 2A + 5B = 6$ MEquating constant terms: $5A - B = 42$ MMultiplies both of the equations in an effort to equate one of theM	M1 2	~ ~	
Equating the coefficients of x: $2A + 5B = 6$ Equating constant terms: $5A - B = 42$ Multiplies both of the equations in an effort to equate one of the M		2.2a	5th Decompose
	M1* 2	2.2a	algebraic fractions into partial fractions – two linear factors.
two variables.	M1 * 1	1.1b	
Finds $A = 8$ A	A1 1	1.1b	
Find $B = -2$ A	A 1 1	1.1b	

(5 marks)

Notes

Alternative method

Uses the substitution method, having first obtained this equation: $A(2x+5) + B(5x-1)^{\circ} 6x + 42$

Substitutes $x = -\frac{5}{2}$ to obtain $-\frac{27}{2}B = 27$ (M1) Substitutes $x = \frac{1}{5}$ to obtain $\frac{27}{5}A = 43.2$ (M1)

2	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
	Begins the proof by assuming the opposite is true.	B1	3.1	7th
	'Assumption: there do exist integers <i>a</i> and <i>b</i> such that $25a + 15b = 1$ '			Complete proofs using proof by contradiction.
	Understands that $25a + 15b = 1 \Rightarrow 5a + 3b = \frac{1}{5}$	M1	2.2a	contradiction.
	'As both 25 and 15 are multiples of 5, divide both sides by 5 to leave $5a + 3b = \frac{1}{5}$ '			
	Understands that if a and b are integers, then $5a$ is an integer, $3b$ is an integer and $5a + 3b$ is also an integer.	M1	1.1b	
	Recognises that this contradicts the statement that $5a + 3b = \frac{1}{5}$,	B1	2.4	
	as $\frac{1}{5}$ is not an integer. Therefore there do not exist integers a and			
	<i>b</i> such that $25a + 15b = 1$ '			
			-	(4 marks)
	Notes			

3	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
(a)	Finds $\frac{dx}{dt} = -2\sin 2t$ and $\frac{dy}{dt} = \cos t$	M1	1.1b	6th Differentiate
	Writes $-2\sin 2t = -4\sin t \cos t$	M1	2.2a	simple functions defined
	Calculates $\frac{dy}{dx} = \frac{\cos t}{-4\sin t\cos t} = -\frac{1}{4}\csc t$	A1	1.1b	parametrically including application to tangents and normals.
		(3)		
(b)	Evaluates $\frac{dy}{dx}$ at $t = -\frac{5\pi}{6}$ $\frac{dy}{dx} = \frac{-1}{4\sin\left(-\frac{5p}{6}\right)} = \frac{1}{2}$	A1 ft	1.1b	6th Differentiate simple functions defined parametrically including application to
	Understands that the gradient of the tangent is $\frac{1}{2}$, and then the gradient of the normal is -2.	M1 ft	1.1b	tangents and normals.
	Finds the values of x and y at $t = -\frac{5\pi}{6}$ $x = \cos\left(2 \times -\frac{5\pi}{6}\right) = \frac{1}{2}$ and $y = \sin\left(-\frac{5\pi}{6}\right) = -\frac{1}{2}$	M1 ft	1.1b	
	Attempts to substitute values into $y - y_1 = m(x - x_1)$ For example, $y + \frac{1}{2} = -2\left(x - \frac{1}{2}\right)$ is seen.	M1 ft	2.2a	
	Shows logical progression to simplify algebra, arriving at: $y = -2x + \frac{1}{2}$ or $4x + 2y - 1 = 0$	A1	2.4	
		(5)		
		·	·	(8 marks)
	Notes			
(b) Awa	rd ft marks for a correct answer using an incorrect answer from pa	rt a .		

4	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
	States that $\cot 3x = \frac{\cos 3x}{\sin 3x}$	M1	2.2a	6th
	$\sin 3x$			Integrate using
	Makes an attempt to find $\int \left(\frac{\cos 3x}{\sin 3x}\right) dx$	M1	2.2a	trigonometric identities.
	Writing $\int \frac{f'(x)}{f(x)} dx = \ln[f(x)]$ or writing $\ln(\sin x)$ constitutes an			
	attempt.			
	States a fully correct answer $\frac{1}{3}\ln \sin 3x + C$	A1	1.1b	
		I	I	(3 marks)
	Notes			

5	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor	
	Demonstrates an attempt to find the vectors \overrightarrow{AB} , \overrightarrow{AC} and \overrightarrow{BC}	M1	2.2a	5th	
	Finds $\overrightarrow{AB} = (0, 4, -2), \overrightarrow{AC} = (5, 4, 8) \text{ and } \overrightarrow{BC} = (5, 0, 10)$	A1	1.1b	Find the magnitude of a	
	Demonstrates an attempt to find $ \overrightarrow{AB} $, $ \overrightarrow{AC} $ and $ \overrightarrow{BC} $	M1	2.2a	vector in 3 dimensions.	
	Finds $ \vec{AB} = \sqrt{(0)^2 + (4)^2 + (-2)^2} = \sqrt{20}$	A1	1.1b		
	Finds $ \overline{AC} = \sqrt{(5)^2 + (4)^2 + (8)^2} = \sqrt{105}$				
	Finds $ \vec{BC} = \sqrt{(5)^2 + (0)^2 + (10)^2} = \sqrt{125}$				
	States or implies in a right-angled triangle $c^2 = a^2 + b^2$	M1	2.2a		
	States that $ \overrightarrow{AB} ^2 + \overrightarrow{AC} ^2 = \overrightarrow{BC} ^2$	B1	2.1		
	(6 marks)				
	Notes				

6	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor	
(a)	States or implies that $pq(x) = (5-2x)^2$	M1	2.2a	5th	
	States or implies that $qp(x) = 5 - 2x^2$	M1	2.2a	Find composite functions.	
	Makes an attempt to solve $(5-2x)^2 = 5-2x^2$. For example, 25-20x+4x ² = 5-2x ² or $6x^2 - 20x + 20 = 0$ is seen.	M1	1.1b		
	States that $3x^2 - 10x + 10 = 0$. Must show all steps and a logical progression.	A1	1.1b		
		(4)			
(b)	$b^2 - 4ac = 100 - 4(3)(10) = -20 < 0$	M1*	2.2a	5th Find the domain	
	States that as $b^2 - 4ac < 0$ there are no real solutions to the equation.	B1*	3.2b	and range of composite functions.	
		(2)			
				(6 marks)	
Notes					
(b) Alte	(b) Alternative Method				
M1: Use	M1: Uses the method of completing the square to show that $3\left(x-\frac{5}{3}\right)^2 + \frac{65}{9} = 0$ or $3\left(x-\frac{5}{3}\right)^2 = -\frac{65}{9}$				
B1: Con	cludes that this equation will have no real solutions.				

7	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
	Begins the proof by assuming the opposite is true.	B1	3.1	7th
	'Assumption: there is a finite amount of prime numbers.'			Complete proofs
	Considers what having a finite amount of prime numbers means by making an attempt to list them:	M1	2.2a	using proof by contradiction.
	Let all the prime numbers exist be $p_1, p_2, p_3,, p_n$			
	Consider a new number that is one greater than the product of all the existing prime numbers:	M1	1.1b	
	Let $N = (p_1 \ p_2 \ p_3 \ \dots \ p_n) + 1$			
	Understands the implication of this new number is that division by any of the existing prime numbers will leave a remainder of 1. So none of the existing prime numbers is a factor of N .	M1	1.1b	
	Concludes that either <i>N</i> is prime or <i>N</i> has a prime factor that is not currently listed.	B1	2.4	
	Recognises that either way this leads to a contradiction, and therefore there is an infinite number of prime numbers.	B1	2.4	
<u> </u>		1	1	(6 marks)

Notes

If N is prime, it is a new prime number separate to the finite list of prime numbers, $p_1, p_2, p_3, \dots p_n$.

If N is divisible by a previously unknown prime number, that prime number is also separate to the finite list of prime numbers.

8	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
	Attempts to write a differential equation.	M1	3.1a	7th
	For example, $\frac{\mathrm{d}F}{\mathrm{d}t} \propto F$ or $\frac{\mathrm{d}F}{\mathrm{d}t} \mid \mu - F$ is seen.			Construct simple differential equations.
	States $\frac{\mathrm{d}F}{\mathrm{d}t} = -kF$	A1	3.1a	
				(2 marks)
Notes				

9	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
(a)	Recognises that it is a geometric series with a first term $a = 100$ and common ratio $r = 1.05$	M1	3.1a	6th
	Attempts to use the sum of a geometric series. For example, $S_9 = \frac{100(1-1.05^9)}{1-1.05} \text{ or } S_9 = \frac{100(1.05^9 - 1)}{1.05 - 1} \text{ is seen.}$	M1*	2.2a	Use geometric sequences and series in context.
	Finds $S_9 = \pounds 1102.66$	A1	1.1b	
		(3)		
(b)	States $\frac{100(1.05^n - 1)}{1.05 - 1} > 6000$ or $\frac{100(1 - 1.05^n)}{1 - 1.05} > 6000$	M1	3.1a	5th Use arithmetic sequences and series in context.
	Begins to simplify. $1.05^n > 4$ or $-1.05^n < -4$	M1	1.1b	
	Applies law of logarithms correctly $n \log 1.05 > \log 4$ or $-n \log 1.05 < -\log 4$	M1	2.2a	
	States $n > \frac{\log 4}{\log 1.05}$	A1	1.1b	
		(4)		
(c)	Uses the sum of an arithmetic series to state $\frac{29}{2} \left[100 + (28)d \right] = 6000$	M1	3.1a	5th Use arithmetic
	Solves for d . $d = \pounds 11.21$	A1	1.1b	sequences and series in context.
		(2)		
		·	·	(9 marks)
M1 Award 1	Notes nark if attempt to calculate the amount of money after 1, 2, 3,,8	and 9 mor	ths is se	een.

10	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor		
	Selects $\cos 2x \equiv 2\cos^2 x - 1$ as the appropriate trigonometric identity.	M1	2.2a	6th Integrate using		
	Manipulates the identity to the question: $\cos 12x \equiv 2\cos^2 6x - 1$	M1	1.1b	trigonometric identities.		
	States that $\int (\cos^2 6x) dx = \frac{1}{2} \int (1 + \cos 12x) dx$	M1	1.1b			
	Makes an attempt to integrate the expression, x and $\sin x$ are seen.	M1	1.1b			
	Correctly states $\frac{1}{2}\left(x + \frac{1}{12}\sin 12x\right) + C$	A1	1.1b			
				(5 marks)		
	Notes					
Student	Student does not need to state '+C' to be awarded the third method mark. Must be stated in the final answer.					

11	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
(a)	Writes $\tan x$ and $\sec x$ in terms of $\sin x$ and $\cos x$. For example,	M1	2.1	5th
	$\frac{\tan x - \sec x}{1 - \sin x} = \frac{\left(\frac{\sin x}{\cos x} - \frac{1}{\cos x}\right)}{\left(\frac{1 - \sin x}{1}\right)}$			Understand the functions sec, cosec and cot.
	Manipulates the expression to find $\left(\frac{\sin x - 1}{\cos x}\right) \times \left(\frac{1}{1 - \sin x}\right)$	M1	1.1b	
	Simplifies to find $-\frac{1}{\cos x} = -\sec x$	A1	1.1b	
		(3)		
(b)	States that $-\sec x = \sqrt{2}$ or $\sec x = -\sqrt{2}$	B1	2.2a	6th
	Writes that $\cos x = -\frac{1}{\sqrt{2}}$ or $x = \cos^{-1}\left(-\frac{1}{\sqrt{2}}\right)$	M1	1.1b	Use the functions sec, cosec and cot to solve simple trigonometric
	Finds $x = \frac{3p}{4}, \frac{5p}{4}$	A1	1.1b	problems.
		(3)		
				(6 marks)
	Notes			

12	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
(a)	Rearranges $x = 8(t+10)$ to obtain $t = \frac{x-80}{8}$	M1	1.1b	8th Use parametric
	Substitutes $t = \frac{x - 80}{8}$ into $y = 100 - t^2$ For example, $y = 100 - \left(\frac{x - 80}{8}\right)^2$ is seen.	M1	1.1b	equations in modelling in a variety of contexts.
	Finds $y = -\frac{1}{64}x^2 + \frac{5}{2}x$	A1	1.1b	
		(3)		
(b)	Deduces that the width of the arch can be found by substituting $t = \pm 10$ into $x = 8(t+10)$	M1	3.4	8th Use parametric
	Finds $x = 0$ and $x = 160$ and deduces the width of the arch is 160 m.	A1	3.2a	equations in modelling in a variety of contexts.
		(2)		
(c)	Deduces that the greatest height occurs when $\frac{dy}{dt} = 0 \Longrightarrow -2t = 0 \Longrightarrow t = 0$	M1	3.4	8th Use parametric equations in
	Deduces that the height is 100 m.	A1	3.2a	modelling in a variety of contexts.
		(2)		
		1	1	(7 marks)
	Notes			

13	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor	
	Makes an attempt to set up a long division.	M1	2.2a	5th	
	For example: $x + 6 \overline{)} x^3 + 8x^2 - 9x + 12$ is seen.			Divide polynomials by linear expressions	
	Award 1 accuracy mark for each of the following:	A4	1.1b	with a remainder.	
	x^2 seen, $2x$ seen, -21 seen.				
	For the final accuracy mark either $D = 138$ or $\frac{138}{x+6}$ or the remainder is 138 must be seen.				
	$ \frac{x^{2} + 2x - 21}{x + 6 x^{3} + 8x^{2} - 9x + 12} $ $ \frac{x^{3} + 6x^{2}}{x^{3} + 6x^{2}} $				
	$2x^2 - 9x$ $\underline{2x^2 + 12x}$				
	-21x+12				
	-21x-126				
	138				
(5 marks)					
	Notes				
This question can be solved by first writing $(Ax^2 + Bx + C)(x + 6) + D^{\circ}x^3 + 8x^2 - 9x + 12$ and then solving for					

This question can be solved by first writing $(Ax^2 + Bx + C)(x + 6) + D = x^2 + 8x^2 - 9x + 12$ and then solving for *A*, *B*, *C* and *D*. Award 1 mark for the setting up the problem as described. Then award 1 mark for each correct coefficient found. For example:

Equating the coefficients of x^3 : A = 1

Equating the coefficients of x^2 : 6 + B = 8, so B = 2

Equating the coefficients of x: 12 + C = -9, so C = -21

Equating the constant terms: -126 + D = 12, so D = 138.

14	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor	
	Recognises the need to use the chain rule to find $\frac{dV}{dt}$ For example $\frac{dV}{dt} = \frac{dV}{dr} \times \frac{dr}{dS} \times \frac{dS}{dt}$ is seen.	M1	3.1a	8th Construct differential equations in a range of contexts.	
	Finds $\frac{\mathrm{d}V}{\mathrm{d}r} = 4\pi r^2$ and $\frac{\mathrm{d}S}{\mathrm{d}r} = 8\pi r$	M1	2.2a		
	Makes an attempt to substitute known values. For example, $\frac{dV}{dt} = \frac{4\pi r^2}{1} \times \frac{1}{8\pi r} \times \frac{-12}{1}$	M1	1.1b		
	Simplifies and states $\frac{\mathrm{d}V}{\mathrm{d}t} = -6r$	A1	1.1b		
(4 marks)					
Notes					

	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
15	Recognises the need to write $\sin^3 x \equiv \sin x (\sin^2 x)$	M1	2.2a	6th Integrate using
	Selects the correct trigonometric identity to write $\sin x(\sin^2 x) \equiv \sin x(1-\cos^2 x)$. Could also write $\sin x - \sin x \cos^2 x$	M1	2.2a	trigonometric identities.
	Makes an attempt to find $\int (\sin x - \sin x \cos^2 x) dx$	M1	1.1b	
	Correctly states answer $-\cos x + \frac{1}{3}\cos^3 x + C$	A1	1.1b	
(4				

Notes

16	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
(a)	Finds $h(19.3) = (+)0.974$ and $h(19.4) = -0.393$	M1	3.1a	7th
	Change of sign and continuous function in the interval $[19.3, 19.4] \Rightarrow$ root	A1	2.4	Use numerical methods to solve problems in context.
		(2)		
(b)	Makes an attempt to differentiate h(<i>t</i>)	M1	2.2a	7th
	Correctly finds $h'(t) = \frac{40}{t+1} + 8\cos\left(\frac{t}{5}\right) - \frac{1}{2}t$	A1	1.1b	Use numerical methods to solve problems in
	Finds $h(19.35) = 0.2903$ and $h(19.35) = -13.6792$	M1	1.1b	context.
	Attempts to find x_1	M1	1.1b	•
	$x_1 = x_0 - \frac{h(x_0)}{h'(x_0)} \Longrightarrow x_1 = 19.35 - \frac{0.2903}{-13.6792}$			
	Finds $x_1 = 19.371$	A1	1.1b	
		(5)		
(c)	Demonstrates an understanding that $x = 19.3705$ and $x = 19.3715$ are the two values to be calculated.	M1	2.2a	7th Use numerical methods to solve problems in context.
	Finds $h(19.3705) = (+)0.0100and h(19.3715) = -0.00366$	M1	1.1b	
	Change of sign and continuous function in the interval $[19.3705, 19.3715] \Rightarrow$ root	A1	2.4	
		(3)		
				(10 marks
	Notes			

17	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
(a)	Demonstrates an attempt to find the vectors \overrightarrow{KL} , \overrightarrow{LM} and \overrightarrow{KM}	M1	2.2a	6th
	Finds $\overrightarrow{KL} = (3,0,-6)$, $\overrightarrow{LM} = (2,5,4)$ and $\overrightarrow{KM} = (5,5,-2)$	A1	1.1b	Solve geometric problems using vectors in 3
	Demonstrates an attempt to find $ \overrightarrow{KL} $, $ \overrightarrow{LM} $ and $ \overrightarrow{KM} $	M1	2.2a	dimensions.
	Finds $ \vec{KL} = \sqrt{(3)^2 + (0)^2 + (-6)^2} = \sqrt{45}$	A1	1.1b	
	Finds $ \overline{LM} = \sqrt{(2)^2 + (5)^2 + (4)^2} = \sqrt{45}$			
	Finds $ \vec{KM} = \sqrt{(5)^2 + (5)^2 + (-2)^2} = \sqrt{54}$			
	Demonstrates an understanding of the need to use the Law of Cosines. Either $c^2 = a^2 + b^2 - 2ab \times \cos C$ (or variation) is seen, or attempt to substitute into formula is made $(\sqrt{54})^2 = (\sqrt{45})^2 + (\sqrt{45})^2 - 2(\sqrt{45})(\sqrt{45})\cos\theta$	M1 ft	2.2a	
	Makes an attempt to simplify the above equation. For example, $-36 = -90\cos\theta$ is seen.	M1 ft	1.1b	
	Shows a logical progression to state $\theta = 66.4^{\circ}$	B1	2.4	
		(7)		
(b)	States or implies that ΔKLM is isosceles.	M1	2.2a	6th
	Makes an attempt to find the missing angles $\angle LKM = \angle LMK = \frac{180 - 66.421}{2}$	M1	1.1b	Solve geometric problems using vectors in 3 dimensions.
	States $\angle LKM = \angle LMK = 56.789^{\circ}$. Accept awrt 56.8°	A1	1.1b	-
		(3)		
				(10 marks)
(b) Awa	Notes and ft marks for a correct answer to part a using their incorrect answ	er from ea	arlier in	part a .