1	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
	States that: $A(2 x+5)+B(5 x \quad 1) \quad 6 x+42$	M1	2.2a	5th Decompose
	Equates the various terms. Equating the coefficients of $x: 2 A+5 B=6$ Equating constant terms: $5 A \quad B=42$	M1*	2.2a	fractions into partial fractions two linear factors.
	Multiplies both of the equations in an effort to equate one of the two variables.	M1*	1.1b	
	Finds $A=8$	A1	1.1b	
	Find $B=-2$	A1	1.1b	
(5 marks)				
Notes				
Alternative method				
Uses the substitution method, having first obtained this equation: $A(2 x+5)+B(5 x$ 1) $6 x+42$				
Substitutes $x=\frac{5}{2}$ to obtain $-\frac{27}{2} B=27$ (M1)				
Substitutes $x=\frac{1}{5}$ to obtain $\frac{27}{5} A=43.2$ (M1)				

2	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
	Begins the proof by assuming the opposite is true. 'Assumption: there do exist integers a and b such that $25 a+15 b=1$ '	B1	3.1	Complete proofs using proof by contradiction.
	Understands that $25 a+15 b=1 \quad 5 a+3 b=\frac{1}{5}$ 'As both 25 and 15 are multiples of 5 , divide both sides by 5 to leave $5 a+3 b=\frac{1}{5}$,	M1	2.2a	
	Understands that if a and b are integers, then $5 a$ is an integer, $3 b$ is an integer and $5 a+3 b$ is also an integer.	M1	1.1b	
	Recognises that this contradicts the statement that $5 a+3 b=\frac{1}{5}$, as $\frac{1}{5}$ is not an integer. Therefore there do not exist integers a and b such that $25 a+15 b=1$,	B1	2.4	
				(4 marks)
Notes				

3	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
(a)	Finds $\frac{\mathrm{d} x}{\mathrm{~d} t}=-2 \sin 2 t \quad$ and $\quad \frac{\mathrm{d} y}{\mathrm{~d} t}=\cos t$	M1	1.1b	6th Differentiate simple functions defined parametrically including application to tangents and normals.
	Writes $-2 \sin 2 t=-4 \sin t \cos t$	M1	2.2a	
	$\text { Calculates } \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\cos t}{-4 \sin t \cos t}=-\frac{1}{4} \operatorname{cosec} t$	A1	1.1b	
		(3)		
(b)	Evaluates $\frac{\mathrm{d} y}{\mathrm{~d} x}$ at $t=-\frac{5 \pi}{6}$ $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{4 \sin \left(\frac{5}{6}\right)}=\frac{1}{2}$	A1 ft	1.1b	6th Differentiate simple functions defined parametrically including application to tangents and normals.
	Understands that the gradient of the tangent is $\frac{1}{2}$, and then the gradient of the normal is -2 .	M1 ft	1.1b	
	Finds the values of x and y at $t=-\frac{5 \pi}{6}$ $x=\cos \left(2 \times-\frac{5 \pi}{6}\right)=\frac{1}{2} \text { and } y=\sin \left(-\frac{5 \pi}{6}\right)=-\frac{1}{2}$	M1 ft	1.1b	
	Attempts to substitute values into $y-y_{1}=m\left(x-x_{1}\right)$ For example, $y+\frac{1}{2}=-2\left(x-\frac{1}{2}\right)$ is seen.	M1 ft	2.2a	
	Shows logical progression to simplify algebra, arriving at: $y=-2 x+\frac{1}{2} \text { or } 4 x+2 y-1=0$	A1	2.4	
		(5)		
(8 marks)				
(b) Award ft marks for a correct answer using an incorrect answer from part a.				

4	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
	States that $\cot 3 x=\frac{\cos 3 x}{\sin 3 x}$	M1	2.2a	6th Integrate using trigonometric identities.
	Makes an attempt to find $\int\left(\frac{\cos 3 x}{\sin 3 x}\right) \mathrm{d} x$ Writing $\int \frac{\mathrm{f}^{\prime}(x)}{\mathrm{f}(x)} \mathrm{d} x=\ln [\mathrm{f}(x)]$ or writing $\ln (\sin x)$ constitutes an attempt.	M1	2.2a	
	States a fully correct answer $\frac{1}{3} \ln \|\sin 3 x\|+C$	A1	1.1b	
				(3 marks)
Notes				

5	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
	Demonstrates an attempt to find the vectors $\overrightarrow{A B}, \overrightarrow{A C}$ and $\overrightarrow{B C}$	M1	2.2a	$\begin{gathered} \text { 5th } \\ \text { Find the } \\ \text { magnitude of a } \\ \text { vector in } 3 \\ \text { dimensions. } \end{gathered}$
	Finds $\overrightarrow{A B}=(0,4,-2), \overrightarrow{A C}=(5,4,8)$ and $\overrightarrow{B C}=(5,0,10)$	A1	1.1b	
	Demonstrates an attempt to find $\|\overrightarrow{A B}\|,\|\overrightarrow{A C}\|$ and $\|\overrightarrow{B C}\|$	M1	2.2a	
	Finds $\|\overrightarrow{A B}\|=\sqrt{(0)^{2}+(4)^{2}+(-2)^{2}}=\sqrt{20}$ Finds $\|\overleftarrow{A C}\|=\sqrt{(5)^{2}+(4)^{2}+(8)^{2}}=\sqrt{105}$ Finds $\|\overrightarrow{B C}\|=\sqrt{(5)^{2}+(0)^{2}+(10)^{2}}=\sqrt{125}$	A1	1.1 b	
	States or implies in a right-angled triangle $c^{2}=a^{2}+b^{2}$	M1	2.2a	
	States that $\|\overrightarrow{A B}\|^{2}+\|\overrightarrow{A C}\|^{2}=\|\overrightarrow{B C}\|^{2}$	B1	2.1	
				(6 marks)
Notes				

6	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
(a)	States or implies that $\mathrm{pq}(x)=(5-2 x)^{2}$	M1	2.2a	5th
	States or implies that $\mathrm{qp}(x)=5-2 x^{2}$	M1	2.2a	Find composite functions.
	Makes an attempt to solve $(5-2 x)^{2}=5-2 x^{2}$. For example, $25-20 x+4 x^{2}=5-2 x^{2}$ or $6 x^{2}-20 x+20=0$ is seen.	M1	1.1b	
	States that $3 x^{2}-10 x+10=0$. Must show all steps and a logical progression.	A1	1.1b	
		(4)		
(b)	$b^{2}-4 a c=100-4(3)(10)=-20<0$	M1*	2.2a	5th Find the domain and range of composite functions.
	States that as $b^{2}-4 a c<0$ there are no real solutions to the equation.	B1*	3.2b	
		(2)		
(6 marks)				

Notes

(b) Alternative Method

M1: Uses the method of completing the square to show that $3\left(x-\frac{5}{3}\right)^{2}+\frac{65}{9}=0$ or $3\left(x-\frac{5}{3}\right)^{2}=-\frac{65}{9}$
B1: Concludes that this equation will have no real solutions.

7	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
	Begins the proof by assuming the opposite is true. 'Assumption: there is a finite amount of prime numbers.'	B1	3.1	7th Complete proofs using proof by contradiction.
	Considers what having a finite amount of prime numbers means by making an attempt to list them: Let all the prime numbers exist be $p_{1}, p_{2}, p_{3}, \ldots p_{n}$	M1	2.2a	
	Consider a new number that is one greater than the product of all the existing prime numbers: Let $N=\left(\begin{array}{lllll}p_{1} & p_{2} & p_{3} & \ldots & p_{n}\end{array}\right)+1$	M1	1.1b	
	Understands the implication of this new number is that division by any of the existing prime numbers will leave a remainder of 1. So none of the existing prime numbers is a factor of N.	M1	1.1b	
	Concludes that either N is prime or N has a prime factor that is not currently listed.	B1	2.4	
	Recognises that either way this leads to a contradiction, and therefore there is an infinite number of prime numbers.	B1	2.4	
(6 marks)				
Notes				
If N is prime, it is a new prime number separate to the finite list of prime numbers, $p_{1}, p_{2}, p_{3}, \ldots p_{n}$. If N is divisible by a previously unknown prime number, that prime number is also separate to the finite list of prime numbers.				

8	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
	Attempts to write a differential equation. For example, $\frac{\mathrm{d} F}{\mathrm{~d} t} \propto F$ or $\frac{\mathrm{d} F}{\mathrm{~d} t} \mu \quad F$ is seen.	M1	3.1a	7th Construct simple differential equations.
	$\text { States } \frac{\mathrm{d} F}{\mathrm{~d} t}=k F$	A1	3.1a	
				(2 marks)
	Notes			

9	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
(a)	Recognises that it is a geometric series with a first term $a=100$ and common ratio $r=1.05$	M1	3.1a	6th Use geometric sequences and series in context.
	Attempts to use the sum of a geometric series. For example, $S_{9}=\frac{100\left(1-1.05^{9}\right)}{1-1.05}$ or $S_{9}=\frac{100\left(1.05^{9}-1\right)}{1.05-1}$ is seen.	M1*	2.2a	
	Finds $S_{9}=£ 1102.66$	A1	1.1b	
		(3)		
(b)	States $\frac{100\left(1.05^{n}-1\right)}{1.05-1}>6000$ or $\frac{100\left(1-1.05^{n}\right)}{1-1.05}>6000$	M1	3.1a	5th Use arithmetic sequences and series in context.
	Begins to simplify. $1.05^{n}>4$ or $-1.05^{n}<-4$	M1	1.1b	
	Applies law of logarithms correctly $n \log 1.05>\log 4$ or $-n \log 1.05<-\log 4$	M1	2.2a	
	States $n>\frac{\log 4}{\log 1.05}$	A1	1.1b	
		(4)		
(c)	Uses the sum of an arithmetic series to state $\frac{29}{2}[100+(28) d]=6000$	M1	3.1a	5th Use arithmetic sequences and series in context.
	Solves for d. $d=£ 11.21$	A1	1.1b	
		(2)		
(9 marks)				
Notes				
M1				

10	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
	Selects $\cos 2 x \equiv 2 \cos ^{2} x-1$ as the appropriate trigonometric identity.	M1	2.2a	6th Integrate using trigonometric identities.
	Manipulates the identity to the question: $\cos 12 x \equiv 2 \cos ^{2} 6 x-1$	M1	1.1b	
	States that $\int\left(\cos ^{2} 6 x\right) \mathrm{d} x=\frac{1}{2} \int(1+\cos 12 x) \mathrm{d} x$	M1	1.1b	
	Makes an attempt to integrate the expression, x and $\sin x$ are seen.	M1	1.1b	
	Correctly states $\frac{1}{2}\left(x+\frac{1}{12} \sin 12 x\right)+C$	A1	1.1b	
(5 marks)				
Notes				

11	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
(a)	Writes $\tan x$ and $\sec x$ in terms of $\sin x$ and $\cos x$. For example, $\frac{\tan x-\sec x}{1-\sin x}=\frac{\left(\frac{\sin x}{\cos x}-\frac{1}{\cos x}\right)}{\left(\frac{1-\sin x}{1}\right)}$	M1	2.1	5th Understand the functions sec, cosec and cot.
	Manipulates the expression to find $\left(\frac{\sin x-1}{\cos x}\right) \times\left(\frac{1}{1-\sin x}\right)$	M1	1.1b	
	Simplifies to find $\frac{1}{\cos x}=\sec x$	A1	1.1b	
		(3)		
(b)	States that $\sec x=\sqrt{2}$ or sec $x=\sqrt{2}$	B1	2.2a	6th Use the functions sec, cosec and cot to solve simple trigonometric problems.
	Writes that $\cos x=\frac{1}{\sqrt{2}}$ or $x=\cos ^{1}\left(\frac{1}{\sqrt{2}}\right)$	M1	1.1b	
	Finds $x=\frac{3}{4}, \frac{5}{4}$	A1	1.1b	
		(3)		
				(6 marks)
Notes				

12	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
(a)	Rearranges $x=8(t+10)$ to obtain $t=\frac{x-80}{8}$	M1	1.1 b	8th Use parametric equations in modelling in a variety of contexts.
	Substitutes $t=\frac{x-80}{8}$ into $y=100-t^{2}$ For example, $y=100-\left(\frac{x-80}{8}\right)^{2}$ is seen.	M1	1.1 b	
	Finds $y=-\frac{1}{64} x^{2}+\frac{5}{2} x$	A1	1.1b	
		(3)		
(b)	Deduces that the width of the arch can be found by substituting $t= \pm 10$ into $x=8(t+10)$	M1	3.4	8th Use parametric equations in modelling in a variety of contexts.
	Finds $x=0$ and $x=160$ and deduces the width of the arch is 160 m .	A1	3.2a	
		(2)		
(c)	Deduces that the greatest height occurs when $\frac{\mathrm{d} y}{\mathrm{~d} t}=0 \Rightarrow-2 t=0 \Rightarrow t=0$	M1	3.4	8th Use parametric equations in modelling in a variety of contexts.
	Deduces that the height is 100 m .	A1	3.2a	
		(2)		
(7 marks)				
Notes				

14	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
	Recognises the need to use the chain rule to find $\frac{\mathrm{d} V}{\mathrm{~d} t}$ For example $\frac{\mathrm{d} V}{\mathrm{~d} t}=\frac{\mathrm{d} V}{\mathrm{~d} r} \times \frac{\mathrm{d} r}{\mathrm{~d} S} \times \frac{\mathrm{d} S}{\mathrm{~d} t}$ is seen.	M1	3.1a	8th Construct differential equations in a range of contexts.
	Finds $\frac{\mathrm{d} V}{\mathrm{~d} r}=4 \pi r^{2}$ and $\frac{\mathrm{d} S}{\mathrm{~d} r}=8 \pi r$	M1	2.2a	
	Makes an attempt to substitute known values. For example, $\frac{\mathrm{d} V}{\mathrm{~d} t}=\frac{4 \pi r^{2}}{1} \times \frac{1}{8 \pi r} \times \frac{-12}{1}$	M1	1.1b	
	Simplifies and states $\frac{\mathrm{d} V}{\mathrm{~d} t}=-6 r$	A1	1.1b	
(4 marks)				
Notes				

	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
15	Recognises the need to write $\sin ^{3} x \equiv \sin x\left(\sin ^{2} x\right)$	M1	2.2a	6th Integrate using trigonometric identities.
	Selects the correct trigonometric identity to write $\sin x\left(\sin ^{2} x\right) \equiv \sin x\left(1-\cos ^{2} x\right)$. Could also write $\sin x-\sin x \cos ^{2} x$	M1	2.2a	
	Makes an attempt to find $\int\left(\sin x-\sin x \cos ^{2} x\right) \mathrm{d} x$	M1	1.1b	
	Correctly states answer $-\cos x+\frac{1}{3} \cos ^{3} x+C$	A1	1.1b	
				(4 marks)
	Notes			

16	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
(a)	Finds $\mathrm{h}(19.3)=(+) 0.974 \ldots$ and $\mathrm{h}(19.4)=0.393 \ldots$	M1	3.1a	7th Use numerical methods to solve problems in context.
	Change of sign and continuous function in the interval $[19.3,19.4] \Rightarrow$ root	A1	2.4	
		(2)		
(b)	Makes an attempt to differentiate $\mathrm{h}(t)$	M1	2.2a	7th Use numerical methods to solve problems in context.
	Correctly finds $\mathrm{h}^{\prime}(t)=\frac{40}{t+1}+8 \cos \left(\frac{t}{5}\right) \quad \frac{1}{2} t$	A1	1.1b	
	Finds $h(19.35)=0.2903 \ldots$ and $h(19.35)=13.6792 \ldots$	M1	1.1b	
	Attempts to find x_{1} $x_{1}=x_{0}-\frac{\mathrm{h}\left(x_{0}\right)}{\mathrm{h}^{\prime}\left(x_{0}\right)} \Rightarrow x_{1}=19.35-\frac{0.2903 \ldots}{-13.6792 \ldots}$	M1	1.1b	
	Finds $x_{1}=19.371$	A1	1.1b	
		(5)		
(c)	Demonstrates an understanding that $x=19.3705$ and $x=19.3715$ are the two values to be calculated.	M1	2.2a	7th Use numerical methods to solve problems in context.
	Finds $\mathrm{h}(19.3705)=(+) 0.0100 \ldots$ and $\mathrm{h}(19.3715)=0.00366 \ldots$	M1	1.1b	
	Change of sign and continuous function in the interval $[19.3705,19.3715] \Rightarrow$ root	A1	2.4	
		(3)		
(10 marks)				
Notes (a) Minimum required is that answer states there is a sign change in the interval and that this implies a root in the given interval.				

17	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
(a)	Demonstrates an attempt to find the vectors $\overrightarrow{K L}, \overrightarrow{L M}$ and $\overrightarrow{K M}$	M1	2.2a	6th Solve geometric problems using vectors in 3 dimensions.
	Finds $\overrightarrow{K L}=(3,0,-6), \overrightarrow{L M}=(2,5,4)$ and $\overrightarrow{K M}=(5,5,-2)$	A1	1.1b	
	Demonstrates an attempt to find $\|\overrightarrow{K L}\|,\|\overrightarrow{L M}\|$ and $\|\overrightarrow{K M}\|$	M1	2.2a	
	Finds $\|\overrightarrow{K L}\|=\sqrt{(3)^{2}+(0)^{2}+(-6)^{2}}=\sqrt{45}$ Finds $\|\overrightarrow{L M}\|=\sqrt{(2)^{2}+(5)^{2}+(4)^{2}}=\sqrt{45}$ Finds $\|\overrightarrow{K M}\|=\sqrt{(5)^{2}+(5)^{2}+(-2)^{2}}=\sqrt{54}$	A1	1.1b	
	Demonstrates an understanding of the need to use the Law of Cosines. Either $c^{2}=a^{2}+b^{2}-2 a b \times \cos C$ (or variation) is seen, or attempt to substitute into formula is made $(\sqrt{54})^{2}=(\sqrt{45})^{2}+(\sqrt{45})^{2}-2(\sqrt{45})(\sqrt{45}) \cos \theta$	M1 ft	2.2a	
	Makes an attempt to simplify the above equation. For example, $-36=-90 \cos \theta$ is seen.	M1 ft	1.1b	
	Shows a logical progression to state $\theta=66.4{ }^{\circ}$	B1	2.4	
		(7)		
(b)	States or implies that $\triangle K L M$ is isosceles.	M1	2.2a	6th Solve geometric problems using vectors in 3 dimensions.
	Makes an attempt to find the missing angles $\angle L K M=\angle L M K=\frac{180-66.421 \ldots}{2}$	M1	1.1b	
	States $\angle L K M=\angle L M K=56.789 \ldots{ }^{\circ}$. Accept awrt 56.8 ${ }^{\circ}$	A1	1.1b	
		(3)		

(10 marks)

Notes

(b) Award ft marks for a correct answer to part \mathbf{a} using their incorrect answer from earlier in part a.

