- (a) Using the identity for $\cos (A + B)$, prove that $\cos \theta = 1 a \sin^2(\frac{1}{2}\theta)$.

(b) Prove that $1 + \sin \theta - \cos \theta = P \sin (\frac{1}{2} \theta) [\cos (\frac{1}{2} \theta) + \sin (\frac{1}{2} \theta)].$

State p

(c) Hence, or otherwise, solve the equation

$$1 + \sin \theta - \cos \theta = 0$$
, $0 \le \theta < 2\pi$.

$$f(x) = x + \frac{3}{x-1} - \frac{12}{x^2 + 2x - 3}, x \in \mathbb{R}, x > 1.$$

(a) Show that $f(x) = \frac{x^2 + 3x + 9}{x + 3}$

State 9/

- (b) Solve the equation $f'(x) = \frac{22}{25}$.

As a substance cools its temperature, T °C, is related to the time (t minutes) for which it has been cooling. The relationship is given by the equation

$$T = 20 + 60e^{-0.1t}, \ t \ge 0.$$

- (a) Find the value of T when the substance started to cool.
- (b) Explain why the temperature of the substance is always above 20°C.
- (c) Sketch the graph of T against t.

- (d) Find the value, to 2 significant figures, of t at the instant T = 60.
- (e) Find $\frac{dT}{dt}$.
- (f) Hence find the value of T at which the temperature is decreasing at a rate of 1.8 °C per
- (i) Given that $y = \tan x + 2 \cos x$, find the exact value of $\frac{dy}{dx}$ at $x = \frac{\pi}{4}$.
- (ii) Given that $x = \tan \frac{1}{2}y$, prove that $\frac{dy}{dx} = \frac{r}{1+x^2}$.
- (iii) Given that $y = e^{-x} \sin 2x$, show that $\frac{dy}{dx}$ can be expressed in the form $R e^{-x} \cos (2x + \alpha)$. Find, to 3 significant figures, the values of R and a, where $0 < \alpha < \frac{\pi}{2}$.

Solve these equations for $0^{\circ} \le x \le 360^{\circ}$

1)
$$\cos 2x + \cos x + 1 = 0$$

2)
$$\cos x = \sin\left(\frac{x}{2}\right)$$

3)
$$\sin 2x \cos x + \sin^2 x = 1$$

4)
$$2 \sin x (5 \cos 2x + 1) = 3 \sin 2x$$

$$3 \cot 2x + \cot x = 1$$