

(io)	Solve the following trigonometric equation
	$\frac{2 + \cos 2x}{3 + \sin^2 2x} = \frac{2}{5}, \text{ for } 0^{\circ} \le x < 360^{\circ},$
<u>(1)</u>	Solve the following trigonometric equation
	$\sin 2\theta = \cot \theta$, $0 \le \theta \le 180^{\circ}$.
(12)	$\frac{\sin 2x}{1-\cos 2x} = \tan x, \ 0 \le x < 2\pi.$
	Find the solutions of the above trigonometric equation, giving the answers in radians in terms of π .
(3)	$\cos 3x = \rho \cos^3 x + q \cos x.$
	Prove the validity of the above trigonometric identity by writing $\cos 3x$ as $\cos (2x+x)$. State ρ and q
(F)	use your answer to question 13 to
	solve the trigonometric equation
	$8\cos^3 x - 6\cos x + 1 = 0, \ 0 \le x < 2\pi,$
	giving the answers in terms of π .
(5)	Solve the trigonometric equation
	$2(1-\cos 2\theta) = \tan \theta, 0 \le \theta \le 180^{\circ}.$
(16)	$\sin 3x \equiv \rho \sin x + q \sin^3 x.$
	Prove the validity of the above trigonometric identity, by writing $\sin 3x$ as $\sin (2x+x)$. State p and q
0	$\cot^2 x - \tan^2 x = 8 \cot 2x, \ 0 \le x < 180.$
	Find the solutions of the above trigonometric equation, giving the answers in degrees.